
Network-aware Service Function Chaining
Placement in a Data Center

Cheng-Husan Hsieh2, Je-Wei Chang2, Chien Chen12, and Ssu-Hsuan Lu2

1Information Technology Service Center
2Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

{hsiehch, changzw, chienchen}@cs.nctu.edu.tw, shlu@nctu.edu.tw

Abstract—Network function virtualization (NFV) has drawn
much attention in recent years, where some network functions
that used to be deployed on specific hardware have become virtu-
alized instances on general servers to achieve more scalability and
flexibility. In a data center, service function chaining (SFC) makes
a workflow traverse different network functions in a specific
order to provide different levels of service for its customer.
Because the distance between any adjacent network functions
in a service chain will decide the total bandwidth consumption
for that chain, the placement of the virtualized network functions
in a data center becomes an important problem. In this study,
this placement problem is treated as a multi-layer bin packing
problem. Two greedy algorithms are proposed for the tree-
like network topology: Multi-layer Worst-Fit (MWF) and Multi-
layer Best Fit (MBF). Furthermore, the placement problem is
formulated as an integer linear programming. The experimental
results show that MWF can reduce bandwidth consumption by
15% while only increasing the number of used servers by 1%
compared to the traditional Best-fit algorithm.

Index Terms—Network Function Virtualization (NFV), Service
Function Chaining (SFC), middlebox, Bin packing.

I. INTRODUCTION

Network Function Virtualization (NFV) has drawn much
attention recently. NFV transfers network functions from ded-
icated physical hardware (also called middlebox) to a Virtual
Machine (VM) on general purpose servers to achieve flexi-
bility and scalability. For instances, virtual network functions
can rapidly scale on demand when burst requests come in a
very short time.

Service function chains (SFC) make different traffic work-
flows traverse different network functions in some specific
order to provide different levels of service in data centers.
In this study, we focus on the SFC placement problem in the
NFV environment (SFC-NFV environment). It is easy to treat
the SFC-NFV placement problem as a special VM placement
problem where each VM has inter-communication with at
most two other VMs. We name this special VM placement
problem the chained VM placement problem.

Previous works [4], [10], [12], [13] discuss the virtual
network function placement problem in the SFC-NFV envi-
ronment. The works [10], [13] have a single aspect of focusing
on the servers’ cost by reducing the number of usage servers
or usage virtual instances. Work [12] focuses on the backbone
topology with multiple objective functions in multiple data

centers. The objective functions are minimizing the latency of
the chaining request, maximizing the remaining bandwidth,
and minimizing the number of used network nodes (e.g.,
network points of present). Alternately, works [10], [12] and
[13] use integer linear programming to get the optimal result.
Stratos [4] uses minimum K-cut to deploy network functions
on top of a rack which will decrease the cost of the network
in the cloud.

However, there are few solutions combining the cost of the
servers and the network in the SFC-NFV environment. The
cost of a cloud [6] reveals that the average cost of servers
and network exceeds half of the cost. Misplacing the virtual
network functions on the different servers may increase the
number of usage servers and total bandwidth consumption.
This study was inspired by the work of [9], which gives a new
point of view on the VM placement problem in a data center
by reducing the cost of both the server and the network. The
work of [9] solves the problem using bin packing where the
cost function in the bin packing algorithm puts reducing cost
of network as higher priority than the cost of servers. In reality,
the server cost is higher than the network cost. Besides, they
consider the network cost a fixed cost. Since the topologies of
the underlay network in the data center are tree-like topologies
such as Fat-Tree [1] and VL2 [7], the network cost between
two servers is easy to evaluate based on the positions of the
servers in the underlay network. Finally, they do not consider a
bin packing algorithm suitable for the chained VM placement
problem.

Therefore, this study presents the chained VM placement
problem under a tree-like topology as a multi-layer bin packing
problem. To the best knowledge, we are the first one to solve
this problem as a multi-layer bin packing problem. We assume
that (1) a network function can use more than one virtual
machine; (2) a virtual machine runs only one network function;
(3) a network function instance must be deployed on a server;
and (4) the amount of traffic in the same chaining request
will not change when the packets are carried out by network
functions. There are different layers of bins, and a server may
belong to many bins and a bin may cover many servers. For
consistency, a server is treated as a bin at layer 1. We group k
bins at layer i to form a bin at layer i+1. It is easy to evaluate
the network cost between two servers using multi-layer bins.

© Copyright IEICE – The 18th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2016

Specifically, the number of hops between any two servers is
decided by the common bin at the lowest layer of these two
servers (see Fig. 1). Thus, the network functions deployed on
the bin at a lower layer will have a smaller network cost. For
instance, the number of layers in Fat-Tree [1] is four due to the
fact that the distance among network functions on the servers
has four different hops: 0 hop, 2 hops, 4 hops, and 6 hops,
respectively.

Fig. 1. Multi-layer Bin Packing in Fat-tree Topology

Multi-layer bin packing first tries to minimize the number
of usage servers, and then tries to deploy network functions
on the bin at a lower layer to reduce network cost based on
SFC requests. We propose two greedy algorithms to solve
the multi-layer bin packing problem: Multi-layer Worst-Fit
(MWF) and Multi-layer Best Fit (MBF). Both MWF and MBF
try to deploy network functions on a SFC request one-by-one
by using local search on bins at different layers with the worst-
fit scheme and the best-fit scheme, respectively.

The main contributions of this study are: (1) the network
function placement and chaining problem is formulated as a
multi-layer bin packing problem taking inter-communication
traffic into account, (2) the proposed algorithms can cover
many tree-like topologies in the data center, and (3) our
algorithms can reduce the bandwidth consumption by at least
15% while only increasing the usage servers by 1% compared
to the best-fit algorithm.

The remainder of this study is organized as follows. Sec-
tion II introduces the related works. Section III formulates
the multi-layer bin packing placement problem and proposes
two greedy algorithms for tree-like topologies. Section IV
discusses the experimental results of the proposed algorithms.
Finally, Section V summarizes this study with a brief conclu-
sion.

II. RELATED WORKS
Traditionally, network functions such as firewall and IDS are

installed in dedicated physical hardware, which is expensive
and difficult to scale or migrate. Some works [2], [3], [5],
[8], [15], [16], [17] show that the network functions come
with high infrastructure and management costs because of the
behavior of functions (e.g., rewrite packet header/payload or
map the sessions). Therefore, network functions that used to
be deployed on specific hardware have become virtualized
instances in general servers to achieve more scalability and
flexibility.

The term service function chaining is used to describe
the ordered list of network functions which packets need to
traverse by sequence. Software-Define Networking (SDN) [11]
gives more flexibility to steering the traffic between network
devices. To keep the ordered sequence, packets can be tagged
in an unused field [3], [15] (e.g., ToS, MPLS, and VLAN
field) or use metadata and multiple tables [18] in the switch.
Another way is using Network Service Header (NSH) [14],
which will maintain the identity of the chaining request and
the index of the function.

It is easy to consider the SFC problem a VM placement
problem. The work of [9]: traffic communication between
VMs is end-to-end, network cost can be reduced if VMs
are deployed nearly in a data center. Besides, the number of
usage servers dominates the overall cost in the cloud. This
work will reduce not only servers cost but also network cost
The work of [4] uses Minimum k-cut to solve SFC. In this
approach, servers can be treated as vertices and traffic among
servers can be treated as edges, then partitioning servers
into a group will decide the total amount of traffic in the
topology. Hence, this approach aims at minimizing bandwidth
consumption when the original topology is partitioned into k
connective components. Many works [10], [12], [13] use linear
integer programming to get the optimal results, and they have
different objective functions, constraints, and environment.
[12] has three different objective functions; and they are (1)
minimizing the number of usage data centers, (2) maximizing
the remaining bandwidth consumption, and (3) minimizing
the total delay of the chaining requests. The environment of
[12] is an internet service provider environment which has
multiple data centers. [13] aims at minimizing the number of
usage servers, and its environment doesn’t take the underlying
network into account. The cost of licenses will be large if the
provider uses more virtual instances which need the license.
Hence, [10] aims at minimizing the number of virtual instances
of each type of function.

Unlike previous works, this study focuses on formulating
the SFC problem as a multi-layer bin packing problem to
minimize the network cost and server cost.

III. NETWORK FUNCTION PLACEMENT AND
CHAINING PROBLEM

In this section, we model our multi-layer bin packing
problem. Subsection A formulates this problem as an integer
linear programming problem in the tree-like network topology.
Subsection B defines the multi-layer bin structure. Subsection
C proposes two greedy algorithms.

A. Network Model

The traffic pattern of SFC is chain-like, and the traffic of
the SFC request must follow the specific ordering to traverse
functions. We consider the number of hops among the adjacent
network functions and use Fat-Tree as the topology. Fat-Tree
is a commonly used topology in the data center, which has
three-tier architecture and k ports at each switch. As shown in
Fig. 1, we have a Fat-Tree with k=4. There are four distances

between network functions, which are (1) hosted by the same
server, (2) hosted by different servers and under the same edge
switch, (3) hosted by different servers, under different edge
switches and under the same pod, and (4) hosted by different
servers and pods. The numbers of the hops between network
functions in each category are 0 hops, 2 hops, 4 hops, 6 hops
respectively.

We describe the inputs, variables, and constraints of this
model. In a real environment, the physical machine has limited
capability, such as CPU utilization of each server. In our
model, the set N represents the server set and the set UN
represents the unused servers. The set c represents the chaining
request. The traffic amount of c is Wc which is a constant. The
Set Fc = {f1, f2,. . . , fn} the network functions are used in
the request c, where fi indicates the i-th function in chain c.

The variables of this model are listed as follows:
• Xi,n ∈ {0, 1} : 1 if fi is deployed on the server n, 0

otherwise.
• Ti,n ∈ {0, 1} : 1 if fi and fi+1 are deployed on the server

n, 0 otherwise.
• Ei,e ∈ {0, 1} : 1 if fi and fi+1 are deployed under the

edge switch e, 0 otherwise.
• Pi,p ∈ {0, 1} : 1 if fi and fi+1 are deployed under the

pod p, 0 otherwise.
• Uv ∈ {0, 1} : 1 if unused server v is used now, 0

otherwise.
Based on these inputs and variables, we present the objective

function and constraints of this model. The objective function
aims at minimizing the network and server cost simultaneously
for deploying a chaining request c.

Objective function:

|F | 1

, , ,(6 2 2 2)
c

c i n i e i p

i n N e E p P

Server v

v UN

W T E P

Min

Cost U

 (1)

Subjected to:

, 1, i 1,2,...,| F |i n c

n N

X

 (2)

| |

, 1,
c

i

F

n c f i n

i

CurrentLoading W P X n N (3)

|F |

, ,
c

v i v

i

U X v UN (4)

, ,i v vX U v UN (5)

, 1, ,1 , , 1,2,...,| F | 1i n i n i n cX X T n N i (6)

, 1

, , , 1,2,...,| F | 1
2

i n i

i n c

X X
T n N i

 (7)

2

, 1, ,

(e 1) 1
2

(X X) 1 E , , 1,2,...,| F | 1 (8)

k
e

i n i n i e c
k

n

e E i

2

, , 1,

(e 1) 1
2

1 (X X), e E,i 1, 2,...,| F | 1
2

 (9)

k e

i e i n i n c
kn

E +

= − +

≤ + ∀ ∈ ∈ −∑

2

2

4

, 1, ,

(p 1) 1
4

(X X) 1 P , , 1, 2,...,| F | 1 (10)

k p

i n i n i p c
kn

p P i+

= − +

+ − ≤ ∀ ∈ ∈ −∑

2

2

4

, , 1,

(p 1) 1
4

1 (X X), p P,i 1, 2,...,| F | 1 (11)
2

k p

i p i n i n c
kn

P +

= − +

≤ + ∀ ∈ ∈ −∑

Equation (2) ensures that a network function is exactly
deployed on a server. Equation (3) ensures that the loading
of a server will not exceed its capability. Equations (4) and
(5) calculate if any unused server v must be used at this time.
Equations (6) and (7) consider the network costs for adjacent
network functions deployed on the same server. Equations (8)
and (9) consider the network costs for the adjacent network
functions deployed under the same edge switch. Equations
(10) and (11) consider the network costs for adjacent network
functions deployed under the same pod.

We solve this problem using multi-layer bin packing. The
next section will introduce the multi-layer bin structure.

B. Multi-layer Bin Structure

This study uses the multi-layer bin structure to identify the
distance relation between any two servers. Since there are four
kinds of distances between servers in the Fat-Tree topology, we
have four different bin structures at their individual layers. For
consistency, a server is treated as the bin with the smallest size
at layer 1. We group k bins at layer i to form a bin at layer i+1,
and the number of hops between the servers in the different
neighboring bins at layer i, who have a common parent bin at
layer i+1, is the same. The bin at the highest layer is the root
bin r. The functions deployed on the bin at lower layers will
have a smaller network cost. In Fat-Tree topology, servers are
covered by multiple bins with different sizes.

Take Fig. 1 as an example. All servers are under the root
bin G. Servers 1 and 2 are individual bins at layer 1 (i.e., B1,
B2), and servers 1 and 2 can form a bin at layer 2 (i.e., Y1).
Server 3 and server 4 can also form another bin at layer 2 (i.e.,
Y2). Hops between servers in these two bins are the same. For
instance, the number of hops between servers 1 and 3 is the
same as the number of hops between servers 1 and server 4.
Moreover, Y1, Y2 can form a bin at layer 3 (i.e., R1). In this
example, the number of hops among servers in the different
bins at layer 3 is six (i.e., R1, R2), the number of hops among
servers in the different bins at layer 2 is four (i.e., Y1, Y2),
and the number of hops between servers in different bins at
layer 1 is two (i.e., B1, B2).

C. Multi-layer Worst-fit / Multi-layer Best-fit

The idea of Multi-layer worst-fit (MWF) and Multi-layer
best-fit (MBF) is that we have two basic operations to search

Fig. 2. A use case of MWF and MBF

the bins at different layers to deploy network functions. They
are downward and upward operations.

• Downward Operation: the downward operation is used
to select a bin to deploy the network function. Suppose
that we start from bin b at layer j. The downward
operation selects one of the children bins from layer j
to layer 1, recursively. In each layer i, suppose that bin
c is selected. We will select a child bin of bin c at layer
i-1 based on worst-fit or best-fit (depends on using MWF
or MBF), where the current capacity of this child bin is
aggregated from the remaining capacity of used servers in
that bin and has a satisfied server to deploy. If we select
a bin at layer 1, we will deploy the network function to
that bin.

• Upward Operation: when a network function is de-
ployed, we use the upward operation to find a satisfied
server to deploy the next network function as close as
possible to the deployed function. The method is to find
the first common bin with the previous network function
from layer 1 to the highest layer, which contains a used
server with enough capacity to deploy the next function.

Using these two operations, the multi-layer worst-fit scheme
and multi-layer best-fit scheme are designed to deploy a
chaining request c = {f1, f2,. . . , fn}, where fi represents
the i-th function in chain c.

• Multi-layer Worst-Fit (MWF): the multi-layer worst-fit
scheme starts from the root bin r and uses the downward
operation to find a satisfied server for the first network
function f1. Then, the multi-layer worst-fit scheme itera-
tively tries to deploy the remaining network functions fk

for (k=2, 3,. . . , n) as follows. First, the multi-layer worst-
fit scheme uses the upward operation to find a common
bin b for fk−1 and fk. Next, the multi-layer worst-fit
scheme uses the downward operation starting at bin b to
select the best server in bin b to deploy fk.

• Multi-layer Best-Fit (MBF): the multi-layer best-fit
scheme starts from the root bin r and uses the downward
operation to find a satisfied in bin r with the least
remaining capacity to deploy the first network function
f1. (Using the total of network functions’ loading as basis
when there is a bin that can satisfy; otherwise, using the
first network function as basis.). Then, the multi-layer
best-fit scheme iteratively tries to deploy the remaining
network functions fk for (k=2, 3,. . . , n) as follows. First,
the multi-layer best-fit scheme uses the upward operation
to find a common bin b for fk−1 and fk. Again, the
multi-layer best-fit scheme selects the best server in bin
b to deploy fk (i.e., the server with the least remaining
capacity).

When both MWF and MBF schemes cannot find a feasible
solution for the network function fj , we will add an unused
server approaching as close to the previous network function
fj−1 as possible.

Figure 2 is an example of how the MWF and MBF schemes
work, where the red number on a bin represents the aggregated
remaining capacity of the used servers in that bin. The initial
state and the input of the chaining request are shown in
Fig. 2(a). Figure 2(b) and (c) demonstrate how the MWF
scheme works. Figure 2(b) shows how to deploy the first
network function in the MWF scheme. Starting from the root

bin r, MWF uses the downward operation to find the satisfied
server (i.e., the steps (1)-(3) in Fig. 2(b)). Figure 2(c) shows
how to deploy the second network function in the MWF
scheme. First, MWF uses the upward operation (the steps
(1)-(3) in Fig. 2(c)) to find a common bin with the previous
network function (i.e., the gray bin in Fig. 2(c)). Then, MWF
again uses the downward operation to find a satisfied server
to deploy the second network function (i.e., the steps (4)-(5)
in Fig. 2(c)).

Figure 2(d) and (e) demonstrate how the MBF scheme
works. Figure 2(d) shows how to deploy the first network
function in the MBF scheme. Starting from root bin r, the MBF
scheme uses the downward operation to find a satisfied server
(i.e., the step (1)-(3) in Fig. 2(d)). Figure 2(e) shows how
to deploy the second network function in the MBF scheme.
First, MBF uses the upward operation (i.e., the steps (1)-(2)
in Fig. 2(e)) to find a common bin with the previous network
function (i.e., the left-orange bin in Fig. 2(e)). Then, MBF
again finds the satisfied server under the common bin using
the best-fit method (i.e., the step (3) in Fig. 2(e)).

IV. SIMULATION

In our simulations, we consider possible lengths of the
chaining requests varying from 2 to 6, and we formulize
each server’s capacity as 1. The loading of the network
functions are 0.2, 0.23, 0.26, 0.29, 0.32, and 0.35, and each
network function’s loading is unique. The traffic amount of
each chaining request is the same and it is fixed as 1. The
number of the ports in a switch in Fat-Tree is 20. The number
of chaining requests is from 100 to 500. The performance
metrics are network cost and server cost, where network cost
is the total number of hops for deploying all of the chaining
requests and server cost is the total number of the used servers.
Each experimental result is the average result of 100 times.

The comparison algorithms are as follows:
• Best-Fit (BF): All network functions are using best-fit to

deploy on the servers.
• Sorted-Based Placement (SBP) [9]: SBP sorts the VM

requests by the number of requested VMs in decreasing
order. Try to deploy the VMs in the request in the sorted
list from the first to the last, and this approach will use
first-fit if all VMs in the requests can be deployed at least
on a server. Otherwise, this approach uses worst-fit to find
the server and deploys the most VMs in that server, and
the remaining VMs will be put into the sorted list and
retain their ordering.

• Multi-layer Worst-Fit (MWF): the detailed description of
MWF is mentioned in section III.C.

• Multi-layer Best-Fit (MBF): the detailed description of
MBF is mentioned in section III.C.

Figure 3 compares all of the algorithms under different
numbers of chaining requests. Figure 3(a) shows the network
cost of all of the algorithms. The network costs of MWF and
MBF are smaller than those of BF and SBP due to these
approaches trying to deploy adjacent network functions as
closely as possible. MWF has the smallest network cost due

(a) Network Cost

0
200
400
600
800

1000
1200
1400
1600
1800
2000

100 200 300 400 500

H
o

p

Number of the chaining requests

BF MBF MWF SBP

(b) Server Cost

0

100

200

300

400

500

600

700

100 200 300 400 500

Se
rv

e
r

Number of the chaining requests

BF MBF MWF SBP

Fig. 3. Under Different Number of the Chaining Requests

to this approach focusing on selecting the bin which has the
largest remaining capacity first, and MWF can reduce network
cost by 14.2% to 15.6% compared to BF, and by 27.5%
compared to SBP. MBF can reduce network cost by 10%
compared to BF, and by 23.4% compared to SBP. SBP has
the largest network cost due to this approach just focusing on
deploying the VMs on the same server but not considering
distance among the remaining VMs in requests which cannot
be deployed on that server. Figure 3(b) shows the server cost of
all of the algorithms. BF has the smallest usage of the servers,
and MBF has the second smallest usage of the servers. MBF
increases the number of the usage servers by 0.2% compared
to BF because this approach is based on best-fit, hence, the
usage of the servers is similar to BF. MWF’s increases the
number of usage servers by 1% compared to BF due to this
approach being based on worst-fit, and the drawback of worst-
fit is contributing fragments. Both MBF and MWF’s number
of the usage servers are lower than SBP; MBF can reduce the
server cost by 6.6% and MWF can reduce it by 6%. SBP has
the largest server cost due to this approach not considering the
used or unused servers.

Figure 4 compares all of the algorithms under different
loadings of the network functions. We fix the number of
chaining requests at 200 and each network function has the
same loading. As shown in Fig. 4(a), when the loading of
network functions is fixed at 0.15, all network functions in a
chaining request can be deployed on a server due to there being
at most 6 network functions in a server, hence, the network
cost of SBP is zero. When the loading of a network function

(a) Network Cost

0

200

400

600

800

1000

1200

1400

1600

0.15 0.2 0.25 0.3 0.35 0.4

H
o

p

Loading of the each network function

BF MBF MWF SBP

(b) Server Cost

0

50

100

150

200

250

300

350

400

450

0.15 0.2 0.25 0.3 0.35 0.4

Se
rv

e
r

Loading of the each network functions

BF MBF MWF SBP

Fig. 4. Under Different Loading of Network Function

increases, SBP has the worst network cost. MWF can reduce
network cost by 10% to 13% compared to BF and can reduce
network cost by 47.5% to 54.3% compared to SBP. MBF can
reduce network cost by 3.1% to 3.7% compared to BF and
can reduce network cost by 41.5% to 50.7% compared to
SBP. As shown in Fig. 4(b), the server cost among BF, MBF,
MWF, and SBP are similar and each network function has the
same loading. SBP uses more servers than others due to its
approach not considering deploying the network functions on
the used server. Since the loading of the network function is
fixed in each case, the difference of the server cost among
these algorithms is insignificant.

V. CONCLUSIONS

Deploying network functions in the chaining requests in a
data center with low cost becomes an important issue. We treat
service function chaining and placement problem as a multi-
layer bin packing problem and discuss this problem in a tree-
like network topology. Our approach uses multi-layer greedy
algorithms for a tree-like network topology which deploys
network functions as close as possible to the previous network
functions in the same chaining request. The experimental
results show that MWF can reduce bandwidth consumption
by 15% while only increasing the number of used servers by
1% compared to the traditional Best-fit algorithm.

ACKNOWLEDGMENT

This research is supported in part by the Ministry of Science
and Technology of Taiwan under Grant: MOST 104-2622-8-

009-001, and is also supported by D-Link.

REFERENCES

[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A
scalable, commodity data center network architecture. ACM SIGCOMM
Computer Communication Review, 38(4):63–74, 2008.

[2] Jeremias Blendin, Julius Ruckert, Nicolai Leymann, Georg Schyguda,
and David Hausheer. Position paper: software-defined network service
chaining. In Software Defined Networks (EWSDN), 2014 Third European
Workshop on, pages 109–114. IEEE, 2014.

[3] Seyed Kaveh Fayazbakhsh, Vyas Sekar, Minlan Yu, and Jeffrey C
Mogul. Flowtags: Enforcing network-wide policies in the presence
of dynamic middlebox actions. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking,
pages 19–24. ACM, 2013.

[4] Aaron Gember, Anand Krishnamurthy, Saul St John, Robert Grandl,
Xiaoyang Gao, Ashok Anand, Theophilus Benson, Vyas Sekar, and
Aditya Akella. Stratos: A network-aware orchestration layer for virtual
middleboxes in clouds. arXiv preprint arXiv:1305.0209, 2013.

[5] Aaron Gember, Prathmesh Prabhu, Zainab Ghadiyali, and Aditya Akella.
Toward software-defined middlebox networking. In Proceedings of the
11th ACM Workshop on Hot Topics in Networks, pages 7–12. ACM,
2012.

[6] Albert Greenberg, James Hamilton, David A Maltz, and Parveen Patel.
The cost of a cloud: research problems in data center networks. ACM
SIGCOMM computer communication review, 39(1):68–73, 2008.

[7] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and
Sudipta Sengupta. Vl2: a scalable and flexible data center network. In
ACM SIGCOMM computer communication review, volume 39, pages
51–62. ACM, 2009.

[8] Dilip A Joseph, Arsalan Tavakoli, and Ion Stoica. A policy-aware
switching layer for data centers. ACM SIGCOMM Computer Commu-
nication Review, 38(4):51–62, 2008.

[9] Xin Li, Jie Wu, Shaojie Tang, and Sanglu Lu. Let’s stay together:
Towards traffic aware virtual machine placement in data centers. In
INFOCOM, 2014 Proceedings IEEE, pages 1842–1850. IEEE, 2014.

[10] Marcelo Caggiani Luizelli, Leonardo Richter Bays, Luciana Salete
Buriol, Marinho Pilla Barcellos, and Luciano Paschoal Gaspary. Piecing
together the nfv provisioning puzzle: Efficient placement and chaining
of virtual network functions. In Integrated Network Management (IM),
2015 IFIP/IEEE International Symposium on, pages 98–106. IEEE,
2015.

[11] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, 2008.

[12] Sevil Mehraghdam, Matthias Keller, and Holger Karl. Specifying and
placing chains of virtual network functions. In Cloud Networking
(CloudNet), 2014 IEEE 3rd International Conference on, pages 7–13.
IEEE, 2014.

[13] Hendrik Moens and Filip De Turck. Vnf-p: A model for efficient
placement of virtualized network functions. In Network and Service
Management (CNSM), 2014 10th International Conference on, pages
418–423. IEEE, 2014.

[14] Network Service Header. https://datatracker.ietf.org/doc/draft-quinn-sfc-
nsh/.

[15] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar,
and Minlan Yu. Simple-fying middlebox policy enforcement using sdn.
In ACM SIGCOMM computer communication review, volume 43, pages
27–38. ACM, 2013.

[16] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia
Ratnasamy, and Vyas Sekar. Making middleboxes someone else’s
problem: network processing as a cloud service. ACM SIGCOMM
Computer Communication Review, 42(4):13–24, 2012.

[17] Justine Sherry, Sylvia Ratnasamy, and Justine Sherry At. A survey of
enterprise middlebox deployments. 2012.

[18] Ying Zhang, Neda Beheshti, Ludovic Beliveau, Gregoire Lefebvre, Ravi
Manghirmalani, Ravishankar Mishra, Ritun Patneyt, Meral Shirazipour,
Ramesh Subrahmaniam, Catherine Truchan, et al. Steering: A software-
defined networking for inline service chaining. In Network Protocols
(ICNP), 2013 21st IEEE International Conference on, pages 1–10. IEEE,
2013.

