
Towards task scheduling in a cloud-fog computing
system

Xuan-Qui Pham
Department of Computer Engineering

Kyung Hee University
Suwon, South Korea

Email: pxuanqui@khu.ac.kr

Eui-Nam Huh
Department of Computer Engineering

Kyung Hee University
Suwon, South Korea

Email: johnhuh@khu.ac.kr

Abstract—In recent years, with the advent of the Internet of
Things (IoT), fog computing is introduced as a powerful comple-
ment to the cloud to handle the IoT’s data and communications
needs. The interplay and cooperation between the edge (fog) and
the core (cloud) has recently received considerable attention. In
this paper, we consider task scheduling in a cloud-fog computing
system, where a fog provider can exploit the collaboration
between its own fog nodes and the rented cloud nodes for
efficiently executing users’ large-scale offloading applications. We
first formulate the task scheduling problem in such cloud-fog
environment and then propose a heuristic-based algorithm, whose
major objective is achieving the balance between the makespan
and the monetary cost of cloud resources. The numerical results
show that our proposed algorithm achieves better tradeoff value
than other existing algorithms.

Index Terms—cloud computing, fog computing, task schedul-
ing, Internet of Things.

I. INTRODUCTION

Fog computing is a promising solution to deal with the
demands of the ever-increasing number of Internet-connected
devices. The idea of fog computing is to extend the cloud to be
closer to the things that produce and act on IoT data. Instead of
forcing all processing to back-end clouds, fog computing aims
to process part of the services’ workload locally on fog nodes,
which are served as a near-end computing proxies between
the front-end IoT devices and the back-end cloud servers.
Putting resources at the edge of the network only one or two
hops from the data sources allows fog nodes to perform low
latency processing while latency-tolerant and large-scale tasks
can still be efficiently processed by the cloud. In addition,
the cost and scale benefits of the cloud can help the fog to
serve peak demands of IoT devices if the resources of fog
nodes are not sufficient. Also, many applications require the
interplay and cooperation between the edge (fog) and the
core (cloud), particularly for the IoT and big data analysis
[1]. From this point of view, fog computing is not aimed
to replace cloud computing, but to complement it in a new
computing paradigm, cloud-fog computing, which is to satisfy
the increasingly sophisticated applications demanded by users.

In this paper, we consider task scheduling in a cloud-
fog computing system, where a fog provider can exploit the
collaboration between its fog nodes and the rented cloud
nodes for efficiently executing users’ large-scale offloading

applications. The fog nodes are local resources, which can be
any devices with computing, storage, and network connectivity
such as switches, routers, video surveillance cameras, etc. A
simple scenario is that a shopping center can deploy many fog
nodes in different floors to provide WiFi access and deliver
some engaged services (i.e. indoor navigation, ads distribution,
feedback collections) to its customers. However, in peak
time, the capabilities of those fog nodes cannot efficiently
serve the customers. Meanwhile, the fog provider, here is the
shopping center, can extend its infrastructure by paying for
the outsourced computation and storage resources of the cloud
nodes, which can be virtual machine (VM) rented from cloud
providers on a pay-per-use basis. All distributed processing
nodes (cloud or fog) are managed by a resource broker, which
is a resource management component and scheduler for the
workflows submitted from users at the fog’s side. In this case,
a task schedule, which can minimize the completion time of
the workflow, but corresponds to a large amount of monetary
cost, is not an optimal solution for fog providers. Thus, in this
paper, we propose a task scheduling algorithm that can achieve
a good tradeoff between the workflow execution time and the
cost for the use of cloud resources. The experimental results
show the outstanding performance of our method compared
with some other works.

The remainder of the paper is organized as follows. In
section 2, we introduce some related works to the task schedul-
ing problem in heterogeneous environments. The architecture
of the cloud-fog computing system is described in section
3. In section 4, we formulate the task scheduling problem
and present our proposed method. Then we describe some
experimental results in section 5, followed by our conclusions
and suggestions for future work in section 6.

II. RELATED WORK

In heterogeneous environments, despite numerous efforts,
task scheduling still remains a big challenge. As usual pre-
sentation, each application is comprised of multiple inter-
dependent tasks and each of which is specified by an amount
of processing works. It can be modeled as a Directed Acyclic
Graph (DAG), in which vertices represent application tasks
and edges represent intertask data dependencies. The primary
goal of task scheduling is to schedule tasks on processors and

© Copyright IEICE – The 18th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2016 

 



minimize the makespan of the schedule, which has been shown
to be NP-complete problem. The most common task schedul-
ing algorithms are list-scheduling heuristics. For example, the
Earliest Time First (ETF) algorithm [2] computes, at each
step, the earliest start times of each tasks on all processors
and then selects the one with the smallest start time. The
Dynamic Level Scheduling (DLS) algorithm [3] selects the
task-processor pair that maximizes the value of the dynamic
level (DL), which is the different between the static level of
a task and its earliest start time on a processor. Meanwhile,
the heterogeneous earliest-finish-time (HEFT) algorithm [4]
selects the tasks with the highest upward rank and then assigns
it to the processor that minimizes its earliest finish time.
However, how to achieve good tradeoff value between the
makespan and the monetary cost is not considered in these
algorithms.

For a large scale environment, e.g. cloud computing system,
there had been also numerous scheduling approaches proposed
with the goal achieving both the better application execution
and cost saving for cloud resources. Bossche at al. [5] intro-
duce a cost-oriented scheduling algorithm to select the most
proper system (private or public cloud) for executing the in-
coming workflows based on the ability of meeting the deadline
of each workflow and cost savings. The budget constraints
for using the cloud resource are considered in ScaleStar [6],
whose task assignment is based on a novel objective function
Comparative Advantage (CA). This algorithm achieves good
balance between cost savings and schedule length, however,
the high complexity of CA hinder the algorithm to be applied
to the large-scale workflows.

Fig. 1. System architecture

III. SYSTEM MODEL

Our cloud-fog computing system has three layers in a
hierarchy network, as represented in Figure 1. The front-end
layer consists of IoT devices, which serve as user interfaces
that send requests from users. The fog layer, which is formed
by a set of near-end fog nodes, receives and processes part of
a workload of users’ requests. The cloud layer, which hosts
a number of computing machines or cloud nodes, provides
outsourced resources to execute the workload dispatched from
the fog layer. Because the computing resources of our system

are dispersed into cloud nodes and fog nodes, there is a
smart gateway or broker, which is a centralized management
component and task scheduler. The broker (1) receives all
requests of users; (2) manages available resources on cloud
and fog nodes (e.g. processing capacity, network bandwidth)
as well as processing and communication costs together with
results of data query returned from nodes; and (3) creates the
most appropriate schedule for an input workflow.

IV. TASK SCHEDULING IN CLOUD-FOG COMPUTING
SYSTEM

A. Task graph
A task graph is represented by a Directed Acyclic Graph

(DAG), G = (V,E), where the set of vertices V =
{v1, v2, ..., vn} denotes the set of parallel subtasks and each
edge eij ∈ E represents the precedence constraint such that
task vi should complete its execution before task vj starts.

Each task vi ∈ V has positive workload wi representing the
amount of computing works (e.g. the number of instructions),
which have to be processed at the computing resources. And
each edge eij ∈ E has nonnegative weight cij representing
the amount of communication data transfered from task vi and
used as input data for task vj . We assume that the sufficient
input data of each task is gathered not only from the preceding
tasks but also from other data sources (i.e. data storages)
on both cloud and fog infrastructure. A task cannot begin
execution until all its inputs have arrived.

The set of all direct predecessors and successors of vi is
denoted as pred(vi) and succ(vi) respectively. We assume
that G has an entry task, ventry, without any predecessors and
an exit task, vexit, without any successors.

B. Processor graph
A processor graph PG = (N,D) denotes the topology

of a cloud-fog network, where the set of vertices N =
{P1, P2, ..., Pn} denotes the set of processors, each of which
is cloud or fog node and an edge dij ∈ D denotes a link
between processor Pi and Pj . Let Ncloud and Nfog denotes
the set of cloud nodes and the set of fog nodes respectively.
Hence, N = Ncloud∪Nfog . Each processor Pi has processing
rate pi and the link dij between processor Pi and Pj has
bandwidth bwij .

C. Proposed method
Given a task graph V = {v1, v2, ..., vn} and a processor

graph P = (N,D), we consider to choose the most appropri-
ate schedule to execute the tasks. Our method has two phases:

1) Determining the task priority: In this phase, tasks are
ordered by their scheduling priorities that are based on upward
ranking. Basically, the upward rank of a task vi is the length
of the critical path from vi to the exit task, including the
computation time of task vi. Let pri(vi) be the priority value
of task vi and be recursively defined by:

pri(vi) =

 w(vi) + max
vj∈succ(vi)

[
c(eij) + pri(vj)

]
if vi 6= vexit

w(vi) if vi ≡ vexit
(1)



where w(vi) is the average execution time of task vi and c(eij)
is the average data transfer time between two tasks vi and vj .
They are computed by:

w(vi) =
wi

W
, (2)

c(eij) =
cij

BW
(3)

with W is the average processing rate of all processors and
BW is the average transfer rate or bandwidth among all
processors.

2) Selecting the most appropriate node to execute each task:
In this phase, the two parameters Earliest Start Time (EST)
and Earliest Finish Time (EFT) need to be defined. A task
vi cannot begin its execution until all its inputs have been
available. Let tdr(vi) be the time when all input data of vi is
ready to be transfered to the selected node for executing the
task vi. It is also the time when the last preceding task of vi
is finished. Thus tdr(vi) is defined by:

tdr(vi) = max
vj∈pred(vi),Pm∈N

[tf (vj , Pm)] (4)

where tf (vj , Pm) is the finish time of task vj on node Pm.
For the entry task, tdr(ventry) = 0.

Suppose task vi is assigned to node Pn. Let c(emn
i ) be the

data transfer time from node Pm to node Pn to execute task
vi, then c(emn

i ) is defined as follows [7]:

c(emn
i ) =


(
dmi +

vj∈pred(vi)∑
vj∈exec(Pm)

cji

)
∗ 1

bwmn
ifm 6= n

0 ifm = n
(5)

where dmi is the amount of data already stored at processor
Pm for executing task vi and exec(Pm) is the set of tasks
executed at node Pm.

When all necessary input data stored from all data storages
on either cloud nodes or fog nodes arrive at the target pro-
cessing node, task execution will begin. Therefore, the values
of EST (vi, Pn) and EFT (vi, Pn) are computed as follows:

EST (vi, Pn) = max

{
avail(Pn), tdr(vi) + max

Pm∈N
(c(emn

i ))

}
(6)

EFT (vi, Pn) = w(vi, Pn) + EST (i, j) (7)

where avail(Pn) is the earliest time that node Pn completes
the last assigned task and be ready to execute another task;
w(vi, Pn) is the execution time of task vi on node Pn. They
are computed as follows:

avail(Pn) = max
vj∈exec(Pn)

[tf (vj , Pn)] , (8)

w(vi, Pn) =
wi

pn
(9)

Besides, the algorithm also considers the monetary cost
that fog provider is charged for the use of cloud resources.
The fog provider rents both virtual hosts representing for
the computing resources and network bandwidth from cloud

providers in order to extend the capabilities of their own
fog nodes. Thus, if Pn is a cloud node, the monetary cost
cost(vi, Pn) for executing task vi on Pn includes two parts: the
processing cost c(vi,Pn)

proc of vi on Pn and the communication
cost c

(vi,Pm)
comm for the amount of outgoing data from a cloud

node Pm ∈ Ncloud to the target node Pn to process task vi. In
contrast, if Pn is a fog node, the fog provider only needs to
pay for transferring the outgoing data from cloud nodes to the
target fog node in the local system. Therefore, the total cost
for executing task vi on a specific node Pn is defined by:

cost(vi, Pn) =


c
(vi,Pn)
proc +

∑
Pm∈Ncloud

c
(vi,Pm)
comm if Pn ∈ Ncloud

∑
Pm∈Ncloud

c
(vi,Pm)
comm if Pn ∈ Nfog

(10)
In (10), the processing cost c(vi,Pn)

proc is calculated as follows:

c(vi,Pn)
proc = c1 ∗ w(vi, Pn) (11)

where c1 is the processing cost per time unit of workflow
execution on cloud node Pn. Let c2 be the the amount of
money per time unit for transferring outgoing data from cloud
node Pm, then the communication cost c(vi,Pm)

comm is calculated
as follows:

c(vi,Pm)
comm = c2 ∗

dmi +

vj∈pred(vi)∑
vj∈exec(Pm)

cji

 (12)

From this cost, we can define an utility function which
computes the tradeoff between the cost and EFT as follows:

U(vi, Pn) =
min
Pk∈N

[cost(vi, Pk)]

cost(vi, Pn)
∗

min
Pk∈N

[EFT (vi, Pk)]

EFT (vi, Pn)
(13)

Then, the task vi is assigned to the node Pn, which provides
the maximal value of the tradeoff U(vi, Pn). Our method is
presented in Algorithm 1.

V. EXPERIMENTAL RESULTS

In this experiment, we present the results to show that our
proposed algorithm can provide a good tradeoff between the
makespan and the cost of task execution. We compare our
algorithm with three others: Greedy for Cost, where each task
is assigned to the the most cost-saving processing node and
the classical HEFT [4] and DLS [3] algorithms mentioned in
section 2. We use Cloudsim for modeling and simulation of
the cloud-fog computing infrastructure. All the parameters are
presented in Table I. The task matrix size is raised from 20 to
100 with the increasing steps of 20.

In order to prove that our algorithm can achieve better
tradeoff value between the makespan and the cost of task
execution than other methods, we define a comparision criteria
called Cost Makespan Tradeoff (CMT) as follows:

CMT (ai) =
min

ak∈SAL
[cost(ak)]

cost(ai)
∗

min
al∈SAL

[makespan(al)]

makespan(ai)
(14)



Algorithm 1: Proposed method
Input: Task graph G(V,E) and processor graph
PG = (N,D) (N = Ncloud ∪Nfog)
Output: A task schedule
1. Compute the priority level pri(vi) of each task vi ∈ V
by traversing graph upward, starting from vexit.
2. Sort all tasks of V into list L by nonincreasing order
of priority levels.
3. For all vi ∈ L do

3.1. Compute tdr(vi)
3.2. For all Pn ∈ N do

3.2.1. Compute EST (vi, Pn), EFT (vi, Pn) and
cost(vi, Pn)

3.2.2. Compute the utility function U(vi, Pn)
3.3. end for
3.4. Assign task vi to the processor Pn that

maximizes U(vi, Pn) of task vi
4. end for

TABLE I
SYSTEM CONFIGURATION

Parameter Value
Topology LAN, fully connected
Number of tasks [20 100]
Number of cloud nodes 42
Number of fog nodes 22
Processing rate [50,500] MIPS
Bandwidth 10, 100, 512, 1024 Mbps
Processing cost per time unit [0.1, 0.5]
Communication cost per time unit [0.3, 0.7]

where SAL = {a1, a2, ..., an} is the list of all scheduling
algorithms, which we compute the CMT value of each
algorithm ai ∈ SAL. The higher of CMT value, the better
tradeoff level on monetary cost and schedule length that an
algorithm can provide. The maximum value of this metric is
1, which is reachable if both cost and schedule length of an
algorithm are the best compared with the others’.

Figures 2 shows the comparision between our algorithm
and the above-mentioned algorithms on the CMT metric.
We can see that our algorithm is stable and achieve the
highest CMT value compared with the others in most cases.
Compared with Greedy for Cost algorithm, which achieves
the minimum monetary cost but long schedule length, our
algorithm has better CMT value in all cases. The HEFT
algorithm achieves the minimum schedule length but it goes
with the significant increase of cost. The DLS algorithm also
achieves small schedule length, but it requires much more cost
for cloud resources and thus gets the worst CMT value, which
is about from 15% to 25% lower than our proposed algorithm.

VI. CONCLUSION

In this paper, we introduce a cloud-fog computing system
which is the combination of fog nodes owned by a fog
provider and cloud nodes rented from cloud providers. For the
sake of reaping the most benefit from cloud-fog computing

Fig. 2. Comparision on the CMT metric between different scheduling
algorithms

system, one must allocate computing tasks strategically at
each processing nodes of each layer. We propose a scheduling
algorithm which not only guarantees the performance of
application execution, but also reduces the mandatory cost for
the use of cloud resources. In future, the scheduling algorithm
should be made more robust by considering additional con-
straints, such as fog provider’s budget and deadline constraint
of a workflow execution.

ACKNOWLEDGMENT

This work was supported by the MSIP(Ministry of Science,
ICT and Future Planning), Korea, under the ITRC(Information
Technology Research Center) support program (IITP-2016-
(H8501-16-1015) supervised by the IITP(Institute for Infor-
mation & communications Technology Promotion)), and In-
stitute for Information & communications Technology Pro-
motion(IITP) grant funded by the Korea government(MSIP)
(No.R7117-16-0202, The Development of Cloud Edge Com-
puting Technology for Real-time IoT/CPS). Professor Eui-
Nam Huh is the corresponding author.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its
Role in the Internet of Things,” in Proceedings of ACM SIGOPS, pp.
8792, 2002.

[2] J.J. Hwang, Y.C. Chow, F.D. Anger, and C.Y. Lee, “Scheduling Prece-
dence Graphs in Systems with Interprocessor Communication Times,” in
SIAM Journal on Computing, vol.18, no. 2, pp. 244-257, Apr. 1989.

[3] G.C. Sih and E.A. Lee, “A compile-time scheduling heuristic for
interconnection-constrained heterogeneous machine architectures,” in
IEEE Trans. Parallel Distrib. Systems, vol.4, no.2, pp. 175186, Feb.
1993.

[4] H. Topcuoglu, S. Hariri and Min-You Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” in IEEE
Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp.
260-274, Mar 2002.

[5] R. Van den Bossche, K. Vanmechelen and J. Broeckhove, “Cost-Efficient
Scheduling Heuristics for Deadline Constrained Workloads on Hybrid
Clouds,” in 2011 IEEE Third International Conference on Cloud Com-
puting Technology and Science (CloudCom), pp. 320-327, 2011.

[6] L. Zeng, B. Veeravalli and X. Li, “ScaleStar: Budget Conscious Schedul-
ing Precedence-Constrained Many-task Workflow Applications in Cloud,”
in 2012 IEEE 26th International Conference on Advanced Information
Networking and Applications, pp. 534-541, 2012.

[7] Nguyen Doan Man and Eui-Nam Huh, “Cost and Efficiency-based
Scheduling on a General Framework Combining between Cloud Com-
puting and Local Thick Clients,” in 2013 International Conference on
Computing, Management and Telecommunications (ComManTel), pp.
258-263, 2013.


