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Abstract—This paper provides a novel controlling
method to avoid improper bifurcations of stable fixed and
periodic points using the maximum Lyapunov exponent.
The Lyapunov exponents that can be calculated from the
sequence of the points characterize the topological prop-
erties of a stable fixed or periodic point if it is the limit
of the sequence. Our main ideas are observing the max-
imum Lyapunov exponent to predict a bifurcation caused
by the change of any parameter value, and controlling any
adjustable system-parameter value so that the bifurcation
never appears. The proposed method can be led from an
optimization problem on the maximum Lyapunov expo-
nent. We presented not only its mathematical derivation but
also the results of numerical experiments on avoiding bifur-
cations to demonstrate the validity of the proposed method.

1. Introduction

Recently, there has been increasing interest on control-
ling bifurcations of limit sets observed in dynamical sys-
tems. For example, bifurcation control [1] deals with mod-
ification of bifurcation characteristics of a nonlinear system
by a designed control input. The objectives of typical bi-
furcation control include delaying the onset of an inherent
bifurcation, changing the parameter value of an existing bi-
furcation point, and so on.

In contrast, we deal with the problem avoiding the occur-
rence of bifurcations in discrete-time dynamical systems.
Here, we assume that an improper bifurcation of a stable
fixed or periodic point can occur by forcible change of sys-
tem parameter value and we cannot directly operate state
variables. Since a method of state feedback control cannot
be utilized, to avoid bifurcations we need another method
changing adjustable system-parameter value.

The maximum Lyapunov exponent that can be calculated
from the sequence of the points [2] characterize the stabil-
ity of a fixed or periodic point if that is the limit of the se-
quence. Therefore, by computing the maximum Lyapunov
exponent from a sequence, we can predict the occurrence of

a bifurcation caused by forcible change of system parame-
ter value. Moreover, the occurrence of a bifurcation can be
avoided by controlling the maximum Lyapunov exponent.
From the aforementioned assumption, feedback control of
Lyapunov exponents [3] is unavailable.

In this paper, we provide a novel method to avoid im-
proper bifurcations of stable fixed and periodic points us-
ing the maximum Lyapunov exponent. Our main ideas are
predicting the occurrence of bifurcations by observing the
maximum Lyapunov exponent, and controlling parameter
values so that the bifurcations never appear. We describe
our controlling method derived from a minimization prob-
lem with respect to the maximum Lyapunov exponent and
show experimental results to demonstrate the validity of the
proposed method.

2. Preparation

Let us consider the map f or the discrete-time dynamical
system described by

f : RN × RM → RN

(x(t),p(t)) 7→ x(t+ 1) = f(x(t),p(t)) (1)

where t is the discrete time, x(t) ∈ RN is the vector of
state variables, p(t) ∈ RM is the vector of time-variant
system parameters, and N and M correspond to the num-
ber of state variables and parameters. Here, we assume
that the change of system parameters are significantly slow
compared with those of the state variables, i.e., all param-
eter values do not change during the period T to calculate
the maximum Lyapunov exponent.

At t = t∗, a point x∗ ∈ RN satisfying

x∗ − f(x∗,p(t∗)) = 0 (2)

becomes a fixed point of f . We express the Jacobian matrix
of f at x(t∗) = x∗ and p(t∗) as

Df(x∗,p(t∗)) =
∂

∂x
f(x,p(t∗))

∣∣∣∣
x=x∗

. (3)
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The topological property of x∗ is determined on the ba-
sis of the arrangement of all characteristic multipliers,
µi (i = 1, 2, . . . , N), corresponding to the eigenvalues of
Df(x∗,p(t∗)). When one or more characteristic multipli-
ers of x∗ are on the circumference of a unit circle in the
complex plane, a bifurcation occurs because of the change
of its topological property. Kawakami [4] has classified the
bifurcation types and has proposed a computational method
of bifurcation points. Focusing on the stability of x∗, it is
stable when all the characteristic multipliers are in the unit
circle; otherwise it is unstable. In the similar way as a fixed
point, the topological property of a periodic point can be
determined on the basis of characteristic multipliers, be-
cause a point x∗ satisfying

x∗ − fn(x∗,p(t∗)) = 0 (4)

becomes an n-periodic point.
Let x(0) be an initial point. We choose an arbitrary point

w(0) ∈ RN in the vicinity of x(0) and iterate as

v(t) =
w(t)

∥w(t)∥
, w(t+ 1) = Df(x(t),p) · v(t) (5)

where ∥·∥ denotes the Euclidean norm of a vector. The
maximum Lyapunov exponent of the sequence x(t) ema-
nating from x(0) can be defined by

λ(x(0),p, T ) = lim
T→∞

1

T

T−1∑
t=0

ln
∥Df(x(t),p) · v(t)∥

∥v(0)∥
.

(6)
If the sequence x(t) emanating from x(0) converges
into a stable fixed or periodic point, then the value of
λ(x(0),p, T ) corresponds to ln(µmax) where

µmax = argmax
i

|µi|. (7)

Hence, the limit of sequence emanating from x(0) is a sta-
ble fixed or periodic point if λ(x(0),p, T ) takes a negative
value. On the basis of the fact, we can predict the occur-
rence of a bifurcation of stable fixed and periodic points by
observing the value of λ(x(0),p, T ).

3. Problem Statement and Controlling Method

Let us rewrite the map f in Eq. (1) as

x(t+ 1) = f(x(t), q(t), r(t)) (8)

where q(t) ∈ RK denotes the vector of system parameters
which can be changed by any environmental change of the
system and the value is not adjustable; r(t) ∈ RL with
L = M − K represents the vector of adjustable system
parameters.

In the system (8), we now consider the situation that a bi-
furcation of a fixed or periodic point can occur by changing
the value of q(t). To simplify the problem, we also assume

that q(t) and r(t) change every mT (m = 1, 2, . . .). More-
over, to simplify the following mathematical notations,
we express λ(x(t0), q, r, T ) for x(t0), t0 = mT (m =
0, 1, 2, . . .) as simply λ. On the basis of these preparations
and assumptions, we propose a controlling method to keep
the value of r(t) away from the bifurcation point when the
values of q(t) and r(t) are in the vicinity of a bifurcation
point as follows.

To solve the problem on avoiding bifurcations, we shall
consider a minimization problem with respect to the objec-
tive function described by

J(λ) =
1

2
(λ− P (λ))

2
. (9)

Here, we define the projection P as

P (λ) =

{
λ if λ ≤ λ∗

λ∗ otherwise (10)

where λ∗ < 0 and its value is set up by a user in order
to detect the approach of system-parameter values to a bi-
furcation point of a fixed or periodic point. Hence, we pre-
sume that system parameters are close to a bifurcation point
when λ∗ < λ < 0.

To avoid the occurrence of a bifurcation, we introduce
the updating rule of r(t) on the basis of the gradient system

r((m+ 1)T )− r(mT ) = −γ
∂J(λ)

∂r
= −γ(λ− λ∗)

∂λ

∂r
.

(11)
Let rℓ be the ℓth entry of r. ∂λ/∂rℓ that is the ℓth entry of
∂λ/∂r in Eq. (11) is derived as follows. From Eqs. (5) and
(6), λ for x(t0) can be calculated as

λ = lim
T→∞

1

T

(m+1)T−1∑
t=mT

log∥w(t+ 1)∥. (12)

By calculating the partial differentiation of Eq. (12) with
rℓ, we obtain

∂λ

∂rℓ
=

1

T

(m+1)T−1∑
t=mT

w(t+ 1)⊤

∥w(t+ 1)∥2
· ∂w(t+ 1)

∂rℓ
(13)

∂∥w(t+ 1)∥
∂rℓ

=
w(t+ 1)⊤

∥w(t+ 1)∥
· ∂w(t+ 1)

∂rℓ
(14)

where ⊤ denotes the transpose of a vector.
Since q(t) and r(t) are changed at t = mT , we have

the partial differentiation terms in the right hand side of
Eqs. (13) and (14) as

∂w(t+ 1)

∂rℓ

=
∂Df(x(t), q, r)

∂rℓ
· v(t) +Df(x(t), q, r) · ∂v(t)

∂rℓ
.

(15)
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Moreover, the partial differentiation at the first term in the
right hand side of Eq. (15) can be calculated as

∂Df(x(t), q, r))ij
∂rℓ

=
N∑

k=1

(
∂2fi(x(t), q, r)

∂xj∂xk
· ∂xk(t)

∂rℓ

)
+

∂2fi(x(t), q, r)

∂xj∂rℓ

(16)

where Df(·)ij denotes the (i, j)th entry of the Jacobian
matrix and ∂xk(t)/∂rℓ can be calculated from the first vari-
ational equation of x(t) with respect to rℓ defined by

∂x(t+ 1)

∂rℓ
= Df(x(t), q, r) · ∂x(t)

∂rℓ
+

∂f(x(t), q, r)

∂rℓ
.

(17)

The partial differentiation at the second term in the right
hand side of Eq. (15) becomes

∂v(t)

∂rℓ
=

1

∥w(t)∥
· ∂w(t)

∂rℓ
− 1

∥w(t)∥2
· ∂∥w(t)∥

∂rℓ
·w(t).

(18)
In Eqs. (13)–(18), we can set to ∂x(0)/∂rℓ = 0,
∂v(0)/∂rℓ = 0, ∂w(0)/∂rℓ = 0.

4. Experimental Results and Discussion

To show the validity of the proposed method, we carried
out experiments on avoiding the bifurcations of fixed and
periodic points observed in the Hénon map defined by

x1(t+ 1) = 1 + x2(t)− q(t) · x1(t)
2 (19a)

x2(t+ 1) = r(t) · x1(t) (19b)

where x = (x1, x2)
⊤ is the vector of state variables, and

q(t) and r(t) are time-variant system parameters.
Before experiments, we found bifurcation points of fixed

and periodic points observed in Eq. (19) using the method
of bifurcation analysis [4]. Figure 1 plots their bifurcation
curves on the plane of the system parameters. In this bi-
furcation diagram, the black solid curve indicated by In

denotes the period-doubling bifurcation set of n-periodic
point; the curve indicated by I1 corresponds to the period-
doubling bifurcation set of the fixed point. The stable fixed
point exists in the left-hand-side parameter region of the
curve I1 and the stable n-periodic point can be observed
in the parameter area surrounded with the two curves In/2

and In. We explain the meanings of the red and blue curves
and the black and white circles later.

Let us demonstrate the proposed controller can avoid
bifurcations of fixed and periodic points. In our experi-
ments, we assumed that the values of q(t) and r(t) are non-
adjustable and adjustable, respectively. Hence, we consid-
ered the situation that q(t) was changed by any reason.
The value of r(t) was updated on the basis of Eqs. (11)–
(18) so that a bifurcation of a stable fixed or periodic point

0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) (b) (c)

Figure 1: Bifurcation diagram and experimental results

never appear. In Eqs. (11) and (12), we set as γ = 0.1,
λ∗ = −0.1, and T = 500.

First, we set the initial values as q(0) = 0.2, r(0) =
0.35, and x(0) = (1.2,−0.1)⊤ so that it converges to the
fixed point. The values of q(0) and r(0) correspond to
the black point (a) in Fig. 1. Let us consider the situa-
tion that q(t) gradually increases every the period T and
then crosses the bifurcation curve I1. In Fig. 1, the blue
line emanating from the black (initial) point denotes the
locus of parameter changes in the simulation without our
controller; the red curve ramified from the blue line ex-
presses those with our controller. The white circles at the
end of blue line and red curve express the end of simulation.
Hence, the fixed point bifurcates without our controller be-
cause the blue line crosses the I1 curve. On the other hand,
as seen from the locus of the red curve, the proposed con-
troller avoided the bifurcation.

Figure 2(a) shows the loci of x1, λ, q, and r as time se-
ries. The blue and red dots correspond to “without control”
and “with control” as Fig. 1. In the case without control,
the value of λ with blue dots gradually increased along the
passage of time, and then the stable fixed point bifurcated at
around t = 80T because λ reached zero. However, as seen
the red dots, after t = 24T , the value of λ was inhibited
to approximately λ∗ by controlling r(t) with the proposed
method. As the results, the period-doubling bifurcation of
the fixed point did not occur.

Second, we treated the problem on avoiding the period-
doubling bifurcation of the stable two-periodic point. Here,
we set q(0) = 0.8, r(0) = 0.35, and x(0) = (1.3,−0.2)⊤

so that the stable two-periodic point appeared. This ini-
tial parameter setting corresponds to the black point (b)
in Fig. 1. We also defined the increase of q(t) so that it
could cross the bifurcation curve I2 as shown in the blue
locus starting from the black point (b) shown in Fig. 1. For
the situation, our controller inhibited the value of λ so that
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λ < λ∗. The inhibition was observed as the red loci of λ in
Fig. 2(b), the updating r(t) with our controller was begun at
t = 33T such that λ > λ∗. As the results, the two-periodic
point was kept without bifurcating at about t = 65T .

Finally, we also experimented on avoiding the period-
doubling bifurcation of a four-periodic point. The initial
values were set as q(0) = 0.95, r(0) = 0.35, and x(0) =
(1.0,−0.25)⊤. In this setting corresponding to the black
point (c) in Fig. 1, the stable four-periodic point could be
observed. Since we also assumed that q(t) could cross the
two period-doubling bifurcations, I4 and I8, in the case
without control, the chaotic state was observed after about
t = 72T in Fig. 2(c). In contrast, the proposed controller
worked well so that the bifurcations were avoided as seen
in Figs. 1 and 2(c).

5. Conclusion

In this paper, we dealt with the problem avoiding bi-
furcations of a stable fixed or periodic point observed in
a discrete-time dynamical system. We proposed a novel
method derived from a minimization problem with respect
to the maximum Lyapunov exponent. We also demon-
strated that the proposed method is valid through exper-
iments to avoid bifurcations of fixed and periodic points
observed in the Hénon map.
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Figure 2: Experimental results displayed as time series
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