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Abstract—This paper presents a distributed particle
swarm optimizer for multi-objective optimization prob-
lems. In the proposed method, multiple subswarms con-
struct a two-layered tree topology. The subswarms in the
lower layer search local solutions for a part of the objective
functions, and the subswarm in the higher layer searches
Pareto front solutions for all objective functions. Some par-
ticles migrate between these layers with a constant interval.
The proposed algorithm is simple and requires low compu-
tation cost. Some simulation results are presented.

1. Introduction

In various engineering systems, there are optimization
problems in which the design parameters are optimized to
obtain feasible systems. The problems which have multiple
objective functions are called multi-objective optimization
problems. The multi-objective optimization problems re-
quire that all objective function values are optimized. How-
ever, generally, trade-off characteristics between each ob-
jective function exist. Therefore, it is needed to obtain a
variety of feasible solutions as candidates to actual design.
Many methods to solve the multi-objective problems have
been proposed, e.g., multi-objective genetic algorithms and
multi-objective particle swarm optimizers [1]- [4]. The
Pareto front approach aims to obtain a solution set called
Pareto optimal front solutions in which each solution is
not inferior to each other for all objective function values.
For the evaluation of each individual, the Pareto ranking
method is often used [2]. On the other hand, in order to
keep the diversity of each solution, the sharing function
method is known as an effective method [3]. In the method,
the degree of congestion of each individual is computed.
Then, solutions with diversity can be obtained. However,
this method requires high computation cost.

In this paper, we propose a simple algorithm for multi-
objective optimization problems based on Particle Swarm
Optimizers (PSOs, [5]). In PSO, particles search solutions
in a target problem. Each particle has velocity and posi-
tion information, and has a personal best solution found by
the particle in the search process and a global best solu-
tion among all particles as information shared in the swarm
in the search process. PSO can fast solve various opti-
mization problems by using simple operations. The pro-

posed algorithm introduces a two-layered subswarm struc-
ture [4]. The low layer consists of multiple subswarms
corresponding to the number of objective functions. Each
subswarm finds a solution to each objective function. The
high layer is a single subswarm which finds Pareto opti-
mal front solutions. These subswarms use archive and grid
schemes to store Pareto front solutions and to share them as
a global best solution set in each subswarm. Between the
subswarms of the high and low layers, some particles mi-
grate periodically. The proposed algorithm is simple and
requires low computation cost. For the benchmark prob-
lems, the numerical simulations are performed and the ef-
fectiveness of the proposed algorithm can be verified.

2. Conventional Algorithm

Particle Swarm Optimization (PSO) is a kind of meta-
heuristic algorithms emulating actions in swarms such as
birds and fishes. Each particle moves around in the search
space, taking advantage of the particle’s local best known
position (pbest) , and is also guided toward the best known
positions (gbest) of the whole swarm. Then, velocity and
position vectors of each particle are updated. The update
equations are as follows.

vk+1
ij = wvkij + c1rand1(pbest

k
ij − xk

ij) (1)

+c2rand2(gbest
k
j − xk

ij)

xk+1
ij = xk

ij + vk+1
ij (2)

where x is a particle’s position, v is a particle’s velocity,
and i is particle number, j is the ingredient of a variable
vector, rand1 and rand2 are uniform random numbers for
[0,1], w is an inertia coefficient, and c1 and c2 are weight
coefficients. In the general Multi-objective PSO(MOPSO),
gbestk is selected from the gbest storage at random [1].
Since plural objective functions exist in multi-objective op-
timization problems, plural optimum solutions (Pareto op-
timal solutions) can exist, where each Pareto optimal so-
lution is not inferior to each other for all objective func-
tion values. In multi-objective optimization, the fitness of
particles is given by Pareto ranking. A rank of a particle
corresponds to the number of particles by which it is dom-
inated. The rank of the Pareto optimal solution is 1. Fur-
thermore, in order to find more various Pareto optimal solu-
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Figure 1: The island model with a two-layered tree struc-
ture

tions (Pareto optimal front), a congestion degree is adopted
to evaluate solutions. Then, the fitness of the place where
many particles gather becomes low. The most common
congestion degree calculation method is the sharing func-
tion method. Fitness F ′

i corrected by a sharing function
from the Fitness Fi is given by the following equation.

Fi
′ =

Fi∑n
j=1 sh(d(i, j))

(3)

where i and j are particle numbers, n is the number of par-
ticles, and sh is a sharing function which determines how
dense the solution is. The following equation for the shar-
ing function is used.

sh(d(i, j)) =

 1− d(i,j)
σshare

if d(i, j) < σshare

0 otherwise

(4)

where d(i, j) is the Euclidean distance in objective space
between the i-th and j-th particles. Niche radius σshare is a
sharing parameter. Evaluation is lowered when the distance
between particles is smaller than the niche radius σshare.
However, this method requires high computation cost.

3. Proposed Algorithm

To reduce calculation cost, in the proposed method, the
island model with a two-layered tree structure is used. As
shown in Fig. 1, single-objective islands are located at low
hierarchy, and a multi-objective island is located at high hi-
erarchy. Each island of the low hierarchy evaluates each
single objective function and it does not evaluate other ob-
jective functions. On the island of the high hierarchy, all
objective functions are evaluated using the Pareto ranking.
Some particles migrate between these layers with a con-
stant interval. Such a hierarchy structure can perform both
global search and local search better than the network struc-
ture in which the same multi-objective islands are evenly
connected.

Figure 2: Grid and archive schemes

In addition, in order to obtain a solutions with diversity,
the following schemes are introduced. Solution space is
divided as grids. The maximum and the minimum of each
objective function value are calculated from particles. The
region for the i th objective function Fi is divided by Ni.
The conception diagram is shown in Fig. 2.

If all the Pareto optimum solutions found by search are
stored as a gbest set, large memory resource is required.
So, it is necessary to decide the capacity of gbest storage. A
particle newly selected as a candidate gbest is compare with
the particles already stored as the gbest set, and the particle
with the Pareto rank 1 is stored. If the acceptable number
which can be stored is exceeded, a solution in a grid where
particles are dense is eliminated based on the evaluation by
using the density degree. Then a variety of solutions can be
obtained without using the sharing function.

4. Simulation Experiments

To compare the proposed method with the general
MOPSO using the sharing function method, the benchmark
selected from the ZDT set [6] are used. All the problems
have two objective functions.

To measure the performances of each method quantita-
tively, the following two metrics are used.

• Generational Distance (GD) [7]

GD =
1

n

√√√√ n∑
i=1

d2i (5)

where n is the number of solutions included in the set of so-
lutions, di is the Euclidean distance in objective space be-
tween the i th particle and the nearest member in the set of
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Table 1: Common parameters in the simulation experi-
ments.

proposed
method

conventional
method

w 0.9
c1 , c2 1.0
# of islands 3 1
Migration interval 20 -
# of migration particles 1 -
# of dimensions 10

Pareto optimal solutions. This metric shows the mean dis-
tance between the found Pareto front and the actual Pareto
optimal front.

• Spacing (S) [7]

S =

√√√√ 1

n

n∑
i=1

(di − d)2
/

d (6)

where d = 1
n

∑n
i=1 di. di is the Euclidean distance in ob-

jective space between the i th particle and its nearest mem-
ber in the particles. This metric measures the uniformity in
the found Pareto front.

The performances about the proposed method and gen-
eral MOPSO are compared through simulation experi-
ments. Experimental parameters are shown in Tables 1 and
2. All the test programs are performed 10 times, the best
results are shown in Table 3. The Pareto front solutions
in the proposed method at the last generation are shown in
Figs. 3-7.

The results of the proposed method are almost the same
or better than those of the conventional method in most
benchmarks. Especially, much better performances can be
verified in ZDT6. ZDT6 has the large deviations of dis-
tribution between decision variables and objective function
values. In ZDT6, it is difficult for the conventional method
to evenly search solution space. However, the proposed
method with a two-layered tree structure can search wider
solution space than the conventional method. In ZDT4,
the value of GD in the proposed method is lower than that
in the conventional method. However, as shown in Fig.6,
some particles in the proposed method can reach the Pareto
optimum front, although other particles cannot. On the
other hand, we have confirmed that all particles in the con-
ventional method cannot reach the Pareto optimum front.
This result means that the proposed method is not inferior
to the conventional method in this problem.

The proposed algorithm is simple and requires low com-
putation cost. The effectiveness of the proposed method
can be verified.

Table 2: Case parameters in the simulation experiments.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
# of

particles
102

(3×34)
102

(3×34)
300

(3×100)
501

(3×167)
102

(3×34)
# of

iterations 1× 104 2× 103 1× 104 1× 105 1× 104

# of
divisions

N1=15,
N2=15

N1=10,
N2=10

N1=10,
N2=18

N1=17,
N2=17

N1=17,
N2=10

σshare 0.003 0.12 0.002 0.1 0.2

Table 3: Comparison of performances on test problems

problem method GD S
conventional method 0.002561 1.305792

ZDT1 proposed method 0.000198 0.566345
conventional method 0.009106 1.620482

ZDT2 proposed method 0.005435 1.243906
conventional method 0.014512 2.048453

ZDT3 proposed method 0.014549 1.413845
conventional method 0.077915 5.912123

ZDT4 proposed method 0.309881 2.610747
conventional method 0.053571 5.081610

ZDT6 proposed method 0.002070 0.716897

5. CONCLUSIONS

This paper has proposed the island-type MOPSO with
two-layered tree structure. This method also introduces
grid and archive schemes as the congestion degree calcula-
tion. The proposed method has been evaluated on five test
problems currently used in the literature. As a result, the
better dispersed Pareto optimum solutions are found with-
out using the sharing function method. That is, the pro-
posed method can search optimal solutions without requir-
ing high calculation cost.

In the future, we plan to test the algorithm proposed in

Figure 3: ZDT1
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Figure 4: ZDT2

Figure 5: ZDT3

this work on a wider set of benchmark problems. In apply-
ing to a problem especially with many objective functions,
it will become an important point how single-objective and
multi-objective islands are built.
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