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Abstract— To deploy Software-Defined Networking (SDN) in a 
large-scale network, cluster-based distributed SDN controllers 
were proposed, which enable performance scaling by simply 
adding a new server in the cluster. However, loads caused by many 
control messages from many kinds of SDN applications have not 
been widely studied so far. In this paper, we show an architecture 
of a distributed SDN controller where all kinds of applications are 
running on all of the servers to share the loads caused by the 
applications. We propose a dynamic application load balancing 
method which calculates the weight of round robin scheduling of 
an external load balancer to distribute requests submitted to the 
applications among the servers. Experimental results show the 
method increases the performance of the controller by reducing 
inter-server messages. 
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I.  INTRODUCTION 

To overcome the limitation of programmability in traditional 
networks, many studies have been carried out on Software-
Defined Networking (SDN) [1] in recent years. Prior to SDN, 
network control logics such as path computation algorithms 
were tightly coupled with distributed hardware switches, which 
prevented agile adaption to customer requirements and 
consolidation with other IT services. On the contrary, 
OpenFlow/SDN [2] decouples network control logics from 
hardware switches, and concentrates them at centralized SDN 
controllers. SDN controllers manage switches by handling 
southbound protocols such as OpenFlow and maintaining 
network topology and network states. They also provide an 
application programming interface (API) for retrieving network 
information and controlling switches, with which network 
control logics are implemented in SDN applications. Since the 
applications are software, flexible network controls which 
follow customer requirements can be realized more quickly than 
with traditional networks. 

Since SDN is centralized architecture, SDN controllers are 
required to scale performance when varying the number of 
switches and control messages. Cluster-based distributed SDN 
controllers are proposed to address this problem [3], [4], [5]. The 
distributed controllers form a cluster which consists of several 
servers, called “c-nodes” in this paper. Each c-node shares 
topology information and manages a separate subset of switches, 
which enables performance scaling by simply adding or 

removing c-nodes. In this paper, our study is based on the open-
source distributed SDN controller ONOS [5]. 

In addition to scalability with a varying number of switches, 
SDN controllers are also required to scale performance when 
many control messages from many kinds of applications are 
issued. This requirement is necessary when SDN is deployed in 
a wide-area network (WAN). In WAN areas, many customers 
use the same network, and they require their traffic to be 
controlled by their own policy such as best-effort service, 
guaranteed quality of service and multipath routing. We 
consider that these policies should be implemented as their SDN 
applications; consequently many kinds of applications will use 
the same SDN controller. However, the loads caused by many 
applications in this context have not been studied sufficiently in 
previous works. In the architecture of ONOS, all kinds of 
applications are running on all c-nodes, and the loads of 
applications can be shared among c-nodes. However, the 
performance will be degraded due to increase of inter-c-node 
messages unless requests to the applications are assigned among 
c-nodes properly. 

In this paper, we propose a dynamic application load 
balancing method. This method works together with an external 
server load balancer, and calculates the weight parameter of 
round robin scheduling in the load balancer to distribute requests 
among c-nodes. We developed an algorithm for calculating the 
parameter to reduce inter-c-node messages. We also show an 
architecture of the SDN controller called a multi-policy 
controller, which makes multiple customer applications control 
the network independently. The dynamic application load 
balancing method works effectively with this architecture. 

The rest of this paper is organized as follows. Related works 
on distributed controllers are shown in Section II. An 
architecture of the multi-policy controller and dynamic 
application load balancing function is described in Section III. 
The algorithm for dynamic application load balancing is 
proposed in Section IV. The method and results of evaluation of 
the performance of the multi-policy controller when varying the 
number of policies, and the performance of the proposed 
algorithm is described in Section V. We conclude this paper by 
showing the limitations of our system and future works in 
Section VI. 
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II. RELATED WORKS 

There are several related works on distributed SDN 
controllers. In the OpenFlow specification, switch configuration 
such as flow table entry can be modified only by the master c-
node, and the master c-node should be assigned to equalize the 
number of messages to/from switches among c-nodes. Load 
balancing of the master c-node is proposed in [3] and [6] to 
increase the scalability when varying the number of switches. 
The architecture of a loosely coupled SDN controller is 
proposed in [4], where an SDN application and SDN controller 
are separated with a messaging system. In this architecture, a 
method to increase the scalability of the messaging system is 
proposed, which consists of multiple message queues. On the 
contrary, ONOS [5] is classified into a tightly coupled 
architecture, where both the SDN application and SDN 
controller function are located in the same c-node. ONOS also 
has a monolithic property, which means all c-nodes in the cluster 
have the same components including SDN applications. 
However, these previous distributed controllers have not 
previously considered the loads caused by many control 
messages from many kinds of applications sufficiently. 

III. ARCHITECTURE 

 In this section, we explain the architecture of the proposed 
system, which is based on ONOS. We show the architecture of 
the multi-policy controller followed by dynamic application 
load balancing based on the architecture. 

A. Multi-policy controller 
Implementing customer policy as applications enables a 

flexible and agile change of network control logics following 
customer requirement. To make customer applications control 
their network independently, the SDN controller is required to 
isolate them from each other. We realize this by slicing physical 
network resources into several virtual networks. Customer 
applications are confined into their virtual networks (Figure 1). 
To describe how the isolation is realized, we explain the 
architecture of the system shown in Figure 2. In this figure, c-
nodes in an SDN controller cluster have the following 
components. Note that among the components, “physical 
network manager” and “virtual network manager” are 
components of ONOS, on the other hand the “app-network 
binding function” are extensions by us. 

The physical network manager handles southbound 
protocols such as OpenFlow to manage physical network 
resources, which includes switches, links and ports, it also sends 
control messages to change the behavior of the switches. The 
relationship between a switch and its master c-node is 
maintained in this component. 

The virtual network manager defines virtual networks 
which consist of virtual switches, virtual ports and virtual links 
on a physical network. Virtual ports are associated with one of 
the ports in the physical network and virtual links are associated 
with tunnels realized by labels such as VLAN or MPLS. 

Both the physical and virtual network managers are distributed 
components, which means that the same information about the 

physical and virtual network topology and their states are shared 
among c-nodes [5]. 

SDN applications (apps) are software which receives 
requests from load balancers, and they issue several control 
messages applied to the switches. Several kinds of applications 
are deployed in the SDN controller, and instances of all 
applications are running on all c-nodes. We assume that apps 
have “transparency property”, which means the same control 
messages are issued with the same request wherever c-node apps 
work. This property is realized by the distributed nature of the 
physical and virtual network managers. 

The app-network binding function confines SDN 
applications into one of the virtual networks. “Confine” here 
means that the apps can only view and control the resources in 
the associated virtual network through the virtual resource 
manager. 

Isolation among apps is achieved by the app-network 
binding function and the virtual network manager. API calls 
issued by confined apps are redirected to the virtual network 
manager instead of the physical network manager by the app-
network binding function. The virtual network manager 
provides the same API as that of the physical network manager, 
and it returns the information about the associated virtual 
network as a response to the API call for retrieving network 
information. Moreover, when the apps issue a Flow Table 
Modification Message [1] which changes the forwarding rule of 

 
Figure 2 Architecture of the proposed system 
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Figure 1 Logical view of multi-policy controller 



a virtual switch, the virtual network manager converts it to the 
message for the physical switch whose port are associated with 
the virtual switch. By adding the push-VLAN or push-MPLS 
action to the converted message, control messages issued by 
different apps are isolated from each other. 

B. Dynamic application load balancing 
With regard to the dynamic application load balancing, the 

system has the following two components which are an 
extension of ONOS developed by us. 

The load balancer is located between the SDN controller 
and external clients to distribute requests to apps among the c-
nodes. The load balancer can simply distribute requests among 
c-nodes without maintaining any states associated with requests 
owing to the transparency property of apps, since the load 
balancer has separate queues for each app, and requests to the 
apps are assigned to one of the c-nodes with weighted round 
robin scheduling for each queue. 

The dynamic application load balancing function is 
running on one of the c-nodes. It collects the measurement 
results from all c-nodes which includes the number of requests 
to the apps and control messages issued by the apps, and it 
computes an optimal weight parameter of round robin 
scheduling which is configured to the load balancer. 

The key point of the dynamic application load balancing is 
to change the weight parameter dynamically based on the 
measurement results. The details of the algorithm and 
measurement are explained in the next section. The multi-policy 
controller was explained in this section, and we will show the 
evaluation results of it when varying the number of policies in 
section V. 

IV. DYNAMIC APPLICATION LOAD BALANCING 

In this section, we start by explaining the issues of load 
balancing of requests to apps followed by the description of our 
load balancing algorithm. For simplicity, in this section and later, 
we assume that SDN apps are path computation functions which 
process path setup requests between two endpoints and issue 
several control messages applied to the switches on the 
calculated path and confirm that all control messages are 
installed. 

A. Issues of load balancing 
In this subsection, we point out that the load balancing 

algorithm should take inter-c-node messages into consideration. 
To explain it, the detailed process of the SDN controller is 
shown after a path setup request is received by one of the c-
nodes denoted by (a) in Figure 3. The app calculates a path 
between two endpoints and issues control messages for virtual 
switches (b). The messages are converted to control messages 
for physical switches by the virtual network manager (c). The 
physical network manager finds the master c-node of the 
destined switch of the control message. If the master c-node is 
the c-node itself, the physical network manager sends the 
message directly to the switch (d), otherwise the message is sent 
to the switch via other c-nodes denoted by (e) and (f). The former 
message is called a “direct message”, and the latter one is called 

an “inter-c-node message”. The physical network manager 
checks that the message installation is completed, and issues the 
completion message. The message is sent to all virtual network 
managers among the c-nodes denoted by (g), (h) and (i). The 
virtual network manager converts the message to that of the 
associated virtual switch (j), and the app issues a path setup 
completion message after all messages of switches on the path 
are received (k). 

From this process, the tasks of c-nodes can be classified into 
the following two kinds of tasks: 

CPU-bound task: path calculation in the app and message 
conversion in the virtual network manager 

I/O-bound task: sending/receiving messages to/from switches 
or other c-nodes 

To increase scalability of the SDN controller by adding the 
c-nodes, the load of these tasks should be balanced among c-
nodes. CPU-bound tasks can be balanced by distributing 
requests with round robin scheduling in which the weight 
parameter is determined by the c-node processing performance. 
Regarding I/O-bound tasks a master c-node assignment 
algorithm to equalize the number of messages between c-nodes 
and switches was proposed in a previous work [3]. In addition, 
inter-c-node messages should be reduced because they are 

 
Figure 3 Detailed process of the SDN controller 
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Figure 4 Example of master c-node assignment 
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distributed SDN controller-specific overheads which means 
they don’t exist in single controller architecture. As described in 
(d), (e) and (f) in Figure 3, the amount of inter-c-node messages 
depends on the c-node where the app works, which is 
determined by the load balancer. That’s why the load balancing 
algorithm should take inter-c-node messages into consideration. 

B. Algorithm 
To reduce inter-c-node messages, we exploit the idea that 

customer apps tend to control a subset of switches. We believe 
this characteristic is common in WAN areas; for example, a 
customer app tends to control the switches around the customer 
sites shown in Figure 4. Moreover, when a certain c-node is the 
dominant master of the subset, which means that the c-node is 
the master of many switches, the inter-c-node messages are 
likely to be reduced by directing requests to the app on the c-
node. For example, “Customer A app” tends to control the subset 
of switches labeled “Subset for customer A” in Figure 4, and c-
node 1 is the dominant master in the subset. In this case, inter-c-
node messages issued by the app are likely to be reduced by 
directing the request to c-node 1. Note that here it is assumed for 
simplicity that the subset is pre-defined and the number of 
messages sent to each switch is equal, but the following method 
does not assume this. 

However, the load of c-nodes cannot be balanced if requests 
are concentrated on a certain c-node. To avoid this we determine 
a weight parameter to maximize the amount of direct messages 
with keeping equality of the total number of requests for all 
kinds of apps. This means the number of requests for a certain 
kind of app is not balanced among c-nodes; however, it is 
balanced for all kinds of apps. We formalized this process with 
linear programming as follows: 

Step 1 The number of requests received by apps and control 
messages issued by the apps are measured for all c-nodes at 
every fixed time, then we calculate the following values: a : The ratio of “direct messages” to all control messages 

issued by app  on c-node . r  The amount of total requests received by app . 

Step 2 The dynamic application load balancing function collects a  and r  from all c-nodes, then solves the following linear 
programming problem:  , (the number of direct messages) 

s. t. −  ≤ δ, −  ≥ , for each c − node   
(c-nodes' load should be balanced)  = ,  for each application  

(all requests should be assigned) where 

x  (variable): The number of requests to app  which are 
assigned to c-node . m: The number of applications. n: The number of c-nodes in the controller. δ: Parameter to relax load equalization. c: C-node’s capacity calculated as c = ∑   

Step 3 The function calculates the weight parameter from the 
result of Step 2 using the following equation, and configures it 
to the load balancer. w = ∑  

where w  is the normalized weight of c-node j for round robin 
scheduling of requests to app i. 

V. EVALUATION 

In this section, the method and results of evaluation of the 
proposed system with emulated OpenFlow switches are shown. 
We conducted the following three experiments: 

E1 Evaluation with varying number of policies 

E2 Evaluation of a simple load balancing 

E3 Evaluation of the dynamic load balancing method 

E1 is intended to evaluate the multi-policy controller. E2 and 
E3 are comparative evaluations between load balancing 
algorithms without and with taking inter-c-node messages into 
consideration. The term “simple load balancing” here means that 
the load balancer uses round robin scheduling where the weight 
parameter is determined only by c-node processing performance. 
We start by explaining the evaluation setup followed by the 
details of each evaluation. 

A. Evaluation setup 
The SDN controller is built on ONOS 1.3 and we extend it 

by implementing the virtual network manager, the app-network 
binding and the dynamic application load balancing function. 
The physical network is built on emulated OpenFlow switches. 
Since the switches work as a component of c-nodes, 
communication overheads between the switch and c-node are 
relatively low compared to those between c-nodes. The number 
of master c-nodes are balanced equally among c-nodes in 
advance. The topology of all virtual networks is the same as that 
of the physical network. 

Elapsed time is measured from submitting a set of path setup 
requests to confirming that all paths are installed in the switches. 
The requests are submitted by the other app, which works on all 
c-nodes to eliminate the influence of client and load-balancer 
performance. For simplicity, the requests satisfied the following 
properties: 

 Endpoints of the path setup request are different ports 
of the same switch, consequently apps generate only 
one control message per request. 



 The destined switches of the requests are equally 
balanced among all switches. 

The servers for all c-nodes have CPU of 4 core Intel Xeon 
CPU E31240 @ 3.30 GHz, and 8 GB of memory is assigned to 
the instance of ONOS. All c-nodes are connected to the same 
layer 2 switch with 1 Gbps link. The number of switches is 15, 
and the number of path requests is 900,000. In all figures from 
this point, we show the throughput of the system, which is the 
number of path requests divided by the measured elapse time. 

B. E1: Evaluation with varying number of polices 
This evaluation is intended to evaluate the virtual network 

manager and app-network binding function, which are used to 
realize the multi-policy controller. In this evaluation the SDN 
controller consists of only one c-node. We measure throughput 
while varying the number of policies and corresponding 
applications and virtual networks. The requests are equally 
submitted among all of the applications. 

Figure 5 shows that the throughput degrades when 
increasing the number of policies. We found that this 
degradation was caused by the overheads of handling 
completion messages denoted by (i) in Figure 3. This problem 
heavily depends on the current implementation of the virtual 
network manager and app-network binding function which 
create the same number of instances of the component to handle 
the completion messages as the number of virtual networks. The 
completion message from the physical network manager is 
broadcasted to all of the instances, and the instances use a lot of 
time to filter irrelevant messages. In the evaluation later, we 
evaluate the system with one virtual network and one kind of 
app to avoid this performance degradation.  

C. E2: Evaluation of simple load balancing 
In this evaluation, we measured the throughput of the SDN 

controller with the simple load balancing where the weight 
parameter of the round robin scheduling is determined only by 
c-node processing performance. The number of working c-
nodes varies from one to the total number of c-nodes, which is 
three or five. Since all servers for c-nodes have the same 

processing performance, the weight parameters of all working c-
nodes are the same. 

Figure 6 shows that the result of the evaluation with three 
and five c-nodes clusters. From this figure, we can find that the 
throughput is increasing when increasing the number of working 
c-nodes in both cases. It indicates the loads of CPU-bound tasks 
are equally balanced among c-nodes and the load for every c-
node is decreasing. However, the increasing amount of the 
throughput by adding one c-node becomes lower when 
increasing the number of working c-nodes. This result indicates 
that the influence of I/O-bound tasks becomes relatively larger 
than CPU-bound tasks. We consider the reasons of this is that 
inter-c-nodes messages don’t decrease when increasing the 
number of running c-nodes with the simple load balancing. 

D. E3: Evaluation of dynamic load balancing 
We evaluated the improvement of the throughput with the 

dynamic load balancing. As described in Section IV this 
function works to maximize direct messages, we measured 
throughput when varying the ratio of it. To change the ratio, the 
path setup requests are intentionally created by sniffing the 
mapping information between virtual and physical switches and 
the master c-nodes. For example, to configure the ratio to 1.0, 
requests are always directed to the master c-node of the destined 
physical switch of the requests. 
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Figure 7 shows that the result of this evaluation with three 
and five c-nodes clusters. In this evaluation, apps are running on 
all c-nodes, this result can be compared with that of E2. For 
example, the result of the number of working c-nodes of “5” on 
“5 c-nodes” line in Figure 6 is the same as that of the ratio of 0.2(= 1/5) of “5 c-nodes” line in Figure 7, where both points 
are denoted by (A). From this figure, we can find that the 
throughput becomes larger when increasing the ratio of direct 
messages. The improvement of the ratio by our algorithm is 
depends on characteristics of applications, network topology, 
customer behavior, etc., however, this result indicates our 
algorithm shows better performance than the simple load 
balancing by reducing inter-c-node messages. 

VI. CONCLUSION 

 In this paper, we described an architecture of the distributed 
SDN controller which can handle multiple customer apps, and 
can work together with external server load balancers. We 
proposed an algorithm to optimize the weight parameter of the 
load balancer dynamically to reduce inter-c-node messages. 
Experimental results show that our method increases the 
performance of the controller. However, there are still 
possibilities to make the algorithm better. For example, this 
algorithm assumes that the loads of processing one request are 
the same among all kinds of apps. This assumption should be 
removed to deploy SDN in realistic and practical environments. 

Moreover, evaluation on how many inter-c-nodes messages can 
be reduced by our algorithm is required. It is still necessary to 
improve performance and scalability of the distributed SDN 
controller to deal with multiple policies. For example, an 
architecture of handling notification messages from the physical 
network manager should be improved so as not to degrade the 
performance when increasing the number of virtual networks. 
We plan to improve the performance of the SDN controller by 
addressing these problems. 

REFERENCES 
[1] Open Networking Foundation, “Software-Defined Networking: The New 

Norm for Networks,” ONF White Paper April 13, 2012. 

[2] Open Networking Foundation, “OpenFlow Switch Specification Version 
1.3.4 ( Protocol version 0x04 ),” March 27, 2014.  

[3] K. Hikichi, S. Shimizu, A. Yamada, and T Somiya, “Study on Scalability 
for Distributed SDN Controller,” Technical Report of 13th IEICE NV, 
Mar 17, 2015 (in Japanese). 

[4] S. Shimizu, A. Yamada, and T Somiya, “Study on Scalable Messaging 
System for Distributed SDN Controller,” IEICE Tech. Rep., vol. 113, no. 
472, NS2013-212, pp. 207-212, March 2014 (in Japanese). 

[5] P. Berde et al. "ONOS: Towards an Open, Distributed SDN OS," In Proc. 
of ACM HotSDN 2014, Aug. 2014.  

[6] A. Dixit, F. Hao, S. Mukherjee, T.V. Lakshman, and R. Kompella, 
“Towards an Elastic Distributed SDN Controller,” Proceedings of the 
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined 
Networking, Oct. 2013.

 


