
Dynamic Application Load Balancing
 in Distributed SDN Controller

Kenji HIKICHI, Toshio SOUMIYA, and Akiko YAMADA
Fujitsu Laboratories Ltd.

Kawasaki, Japan
hikichi.kenji@jp.fujitsu.com

Abstract— To deploy Software-Defined Networking (SDN) in a
large-scale network, cluster-based distributed SDN controllers
were proposed, which enable performance scaling by simply
adding a new server in the cluster. However, loads caused by many
control messages from many kinds of SDN applications have not
been widely studied so far. In this paper, we show an architecture
of a distributed SDN controller where all kinds of applications are
running on all of the servers to share the loads caused by the
applications. We propose a dynamic application load balancing
method which calculates the weight of round robin scheduling of
an external load balancer to distribute requests submitted to the
applications among the servers. Experimental results show the
method increases the performance of the controller by reducing
inter-server messages.

Keywords—SDN; distributed SDN controller; OpenFlow;
distributed sytem; load balancing; network virtualization

I. INTRODUCTION

To overcome the limitation of programmability in traditional
networks, many studies have been carried out on Software-
Defined Networking (SDN) [1] in recent years. Prior to SDN,
network control logics such as path computation algorithms
were tightly coupled with distributed hardware switches, which
prevented agile adaption to customer requirements and
consolidation with other IT services. On the contrary,
OpenFlow/SDN [2] decouples network control logics from
hardware switches, and concentrates them at centralized SDN
controllers. SDN controllers manage switches by handling
southbound protocols such as OpenFlow and maintaining
network topology and network states. They also provide an
application programming interface (API) for retrieving network
information and controlling switches, with which network
control logics are implemented in SDN applications. Since the
applications are software, flexible network controls which
follow customer requirements can be realized more quickly than
with traditional networks.

Since SDN is centralized architecture, SDN controllers are
required to scale performance when varying the number of
switches and control messages. Cluster-based distributed SDN
controllers are proposed to address this problem [3], [4], [5]. The
distributed controllers form a cluster which consists of several
servers, called “c-nodes” in this paper. Each c-node shares
topology information and manages a separate subset of switches,
which enables performance scaling by simply adding or

removing c-nodes. In this paper, our study is based on the open-
source distributed SDN controller ONOS [5].

In addition to scalability with a varying number of switches,
SDN controllers are also required to scale performance when
many control messages from many kinds of applications are
issued. This requirement is necessary when SDN is deployed in
a wide-area network (WAN). In WAN areas, many customers
use the same network, and they require their traffic to be
controlled by their own policy such as best-effort service,
guaranteed quality of service and multipath routing. We
consider that these policies should be implemented as their SDN
applications; consequently many kinds of applications will use
the same SDN controller. However, the loads caused by many
applications in this context have not been studied sufficiently in
previous works. In the architecture of ONOS, all kinds of
applications are running on all c-nodes, and the loads of
applications can be shared among c-nodes. However, the
performance will be degraded due to increase of inter-c-node
messages unless requests to the applications are assigned among
c-nodes properly.

In this paper, we propose a dynamic application load
balancing method. This method works together with an external
server load balancer, and calculates the weight parameter of
round robin scheduling in the load balancer to distribute requests
among c-nodes. We developed an algorithm for calculating the
parameter to reduce inter-c-node messages. We also show an
architecture of the SDN controller called a multi-policy
controller, which makes multiple customer applications control
the network independently. The dynamic application load
balancing method works effectively with this architecture.

The rest of this paper is organized as follows. Related works
on distributed controllers are shown in Section II. An
architecture of the multi-policy controller and dynamic
application load balancing function is described in Section III.
The algorithm for dynamic application load balancing is
proposed in Section IV. The method and results of evaluation of
the performance of the multi-policy controller when varying the
number of policies, and the performance of the proposed
algorithm is described in Section V. We conclude this paper by
showing the limitations of our system and future works in
Section VI.

© Copyright IEICE – The 18th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2016

II. RELATED WORKS

There are several related works on distributed SDN
controllers. In the OpenFlow specification, switch configuration
such as flow table entry can be modified only by the master c-
node, and the master c-node should be assigned to equalize the
number of messages to/from switches among c-nodes. Load
balancing of the master c-node is proposed in [3] and [6] to
increase the scalability when varying the number of switches.
The architecture of a loosely coupled SDN controller is
proposed in [4], where an SDN application and SDN controller
are separated with a messaging system. In this architecture, a
method to increase the scalability of the messaging system is
proposed, which consists of multiple message queues. On the
contrary, ONOS [5] is classified into a tightly coupled
architecture, where both the SDN application and SDN
controller function are located in the same c-node. ONOS also
has a monolithic property, which means all c-nodes in the cluster
have the same components including SDN applications.
However, these previous distributed controllers have not
previously considered the loads caused by many control
messages from many kinds of applications sufficiently.

III. ARCHITECTURE

 In this section, we explain the architecture of the proposed
system, which is based on ONOS. We show the architecture of
the multi-policy controller followed by dynamic application
load balancing based on the architecture.

A. Multi-policy controller
Implementing customer policy as applications enables a

flexible and agile change of network control logics following
customer requirement. To make customer applications control
their network independently, the SDN controller is required to
isolate them from each other. We realize this by slicing physical
network resources into several virtual networks. Customer
applications are confined into their virtual networks (Figure 1).
To describe how the isolation is realized, we explain the
architecture of the system shown in Figure 2. In this figure, c-
nodes in an SDN controller cluster have the following
components. Note that among the components, “physical
network manager” and “virtual network manager” are
components of ONOS, on the other hand the “app-network
binding function” are extensions by us.

The physical network manager handles southbound
protocols such as OpenFlow to manage physical network
resources, which includes switches, links and ports, it also sends
control messages to change the behavior of the switches. The
relationship between a switch and its master c-node is
maintained in this component.

The virtual network manager defines virtual networks
which consist of virtual switches, virtual ports and virtual links
on a physical network. Virtual ports are associated with one of
the ports in the physical network and virtual links are associated
with tunnels realized by labels such as VLAN or MPLS.

Both the physical and virtual network managers are distributed
components, which means that the same information about the

physical and virtual network topology and their states are shared
among c-nodes [5].

SDN applications (apps) are software which receives
requests from load balancers, and they issue several control
messages applied to the switches. Several kinds of applications
are deployed in the SDN controller, and instances of all
applications are running on all c-nodes. We assume that apps
have “transparency property”, which means the same control
messages are issued with the same request wherever c-node apps
work. This property is realized by the distributed nature of the
physical and virtual network managers.

The app-network binding function confines SDN
applications into one of the virtual networks. “Confine” here
means that the apps can only view and control the resources in
the associated virtual network through the virtual resource
manager.

Isolation among apps is achieved by the app-network
binding function and the virtual network manager. API calls
issued by confined apps are redirected to the virtual network
manager instead of the physical network manager by the app-
network binding function. The virtual network manager
provides the same API as that of the physical network manager,
and it returns the information about the associated virtual
network as a response to the API call for retrieving network
information. Moreover, when the apps issue a Flow Table
Modification Message [1] which changes the forwarding rule of

Figure 2 Architecture of the proposed system

Physical network

Physical Network
Manager

SDN Controller

c-node 1

Load balancer

Virtual Network
Manager

Physical Network
Manager

c-node 2

Customer
A App

Customer
B App

Customer
A App

Customer
B App

Dynamic
application load

balancing

App-Network
binding

Virtual Network
Manager

App-Network
binding

c-node n

Figure 1 Logical view of multi-policy controller

a virtual switch, the virtual network manager converts it to the
message for the physical switch whose port are associated with
the virtual switch. By adding the push-VLAN or push-MPLS
action to the converted message, control messages issued by
different apps are isolated from each other.

B. Dynamic application load balancing
With regard to the dynamic application load balancing, the

system has the following two components which are an
extension of ONOS developed by us.

The load balancer is located between the SDN controller
and external clients to distribute requests to apps among the c-
nodes. The load balancer can simply distribute requests among
c-nodes without maintaining any states associated with requests
owing to the transparency property of apps, since the load
balancer has separate queues for each app, and requests to the
apps are assigned to one of the c-nodes with weighted round
robin scheduling for each queue.

The dynamic application load balancing function is
running on one of the c-nodes. It collects the measurement
results from all c-nodes which includes the number of requests
to the apps and control messages issued by the apps, and it
computes an optimal weight parameter of round robin
scheduling which is configured to the load balancer.

The key point of the dynamic application load balancing is
to change the weight parameter dynamically based on the
measurement results. The details of the algorithm and
measurement are explained in the next section. The multi-policy
controller was explained in this section, and we will show the
evaluation results of it when varying the number of policies in
section V.

IV. DYNAMIC APPLICATION LOAD BALANCING

In this section, we start by explaining the issues of load
balancing of requests to apps followed by the description of our
load balancing algorithm. For simplicity, in this section and later,
we assume that SDN apps are path computation functions which
process path setup requests between two endpoints and issue
several control messages applied to the switches on the
calculated path and confirm that all control messages are
installed.

A. Issues of load balancing
In this subsection, we point out that the load balancing

algorithm should take inter-c-node messages into consideration.
To explain it, the detailed process of the SDN controller is
shown after a path setup request is received by one of the c-
nodes denoted by (a) in Figure 3. The app calculates a path
between two endpoints and issues control messages for virtual
switches (b). The messages are converted to control messages
for physical switches by the virtual network manager (c). The
physical network manager finds the master c-node of the
destined switch of the control message. If the master c-node is
the c-node itself, the physical network manager sends the
message directly to the switch (d), otherwise the message is sent
to the switch via other c-nodes denoted by (e) and (f). The former
message is called a “direct message”, and the latter one is called

an “inter-c-node message”. The physical network manager
checks that the message installation is completed, and issues the
completion message. The message is sent to all virtual network
managers among the c-nodes denoted by (g), (h) and (i). The
virtual network manager converts the message to that of the
associated virtual switch (j), and the app issues a path setup
completion message after all messages of switches on the path
are received (k).

From this process, the tasks of c-nodes can be classified into
the following two kinds of tasks:

CPU-bound task: path calculation in the app and message
conversion in the virtual network manager

I/O-bound task: sending/receiving messages to/from switches
or other c-nodes

To increase scalability of the SDN controller by adding the
c-nodes, the load of these tasks should be balanced among c-
nodes. CPU-bound tasks can be balanced by distributing
requests with round robin scheduling in which the weight
parameter is determined by the c-node processing performance.
Regarding I/O-bound tasks a master c-node assignment
algorithm to equalize the number of messages between c-nodes
and switches was proposed in a previous work [3]. In addition,
inter-c-node messages should be reduced because they are

Figure 3 Detailed process of the SDN controller

(VSW: virtual switch, PSW: physical switch)

Physical network
manager

Virtual network manager
(message converter)

Path computation
app

node 1’s switches

path setup request (a)

c-node1

contro l o f
VSW (b)

contro l o f
PSW (c)

contro l o f
PSW (d)

com p letion
of PSW (i)

completion of setup (k)

com p letion
of VSW (j)

Physical network
manager

Virtual network manager
(message converter)

Path computation
app

node 2’s switches

c-node 2

control o f
PSW (f)

contro l o f
PSW (e)

com p letion
of PSW (h)

com p letion
of PSW (g)

Figure 4 Example of master c-node assignment

(The color and pattern of switches shows master c-node)

distributed SDN controller-specific overheads which means
they don’t exist in single controller architecture. As described in
(d), (e) and (f) in Figure 3, the amount of inter-c-node messages
depends on the c-node where the app works, which is
determined by the load balancer. That’s why the load balancing
algorithm should take inter-c-node messages into consideration.

B. Algorithm
To reduce inter-c-node messages, we exploit the idea that

customer apps tend to control a subset of switches. We believe
this characteristic is common in WAN areas; for example, a
customer app tends to control the switches around the customer
sites shown in Figure 4. Moreover, when a certain c-node is the
dominant master of the subset, which means that the c-node is
the master of many switches, the inter-c-node messages are
likely to be reduced by directing requests to the app on the c-
node. For example, “Customer A app” tends to control the subset
of switches labeled “Subset for customer A” in Figure 4, and c-
node 1 is the dominant master in the subset. In this case, inter-c-
node messages issued by the app are likely to be reduced by
directing the request to c-node 1. Note that here it is assumed for
simplicity that the subset is pre-defined and the number of
messages sent to each switch is equal, but the following method
does not assume this.

However, the load of c-nodes cannot be balanced if requests
are concentrated on a certain c-node. To avoid this we determine
a weight parameter to maximize the amount of direct messages
with keeping equality of the total number of requests for all
kinds of apps. This means the number of requests for a certain
kind of app is not balanced among c-nodes; however, it is
balanced for all kinds of apps. We formalized this process with
linear programming as follows:

Step 1 The number of requests received by apps and control
messages issued by the apps are measured for all c-nodes at
every fixed time, then we calculate the following values: a : The ratio of “direct messages” to all control messages

issued by app on c-node . r The amount of total requests received by app .

Step 2 The dynamic application load balancing function collects a and r from all c-nodes, then solves the following linear
programming problem: , (the number of direct messages)

s. t. − ≤ δ, − ≥ , for each c − node
(c-nodes' load should be balanced) = , for each application

(all requests should be assigned) where

x (variable): The number of requests to app which are
assigned to c-node . m: The number of applications. n: The number of c-nodes in the controller. δ: Parameter to relax load equalization. c: C-node’s capacity calculated as c = ∑

Step 3 The function calculates the weight parameter from the
result of Step 2 using the following equation, and configures it
to the load balancer. w = ∑

where w is the normalized weight of c-node j for round robin
scheduling of requests to app i.

V. EVALUATION

In this section, the method and results of evaluation of the
proposed system with emulated OpenFlow switches are shown.
We conducted the following three experiments:

E1 Evaluation with varying number of policies

E2 Evaluation of a simple load balancing

E3 Evaluation of the dynamic load balancing method

E1 is intended to evaluate the multi-policy controller. E2 and
E3 are comparative evaluations between load balancing
algorithms without and with taking inter-c-node messages into
consideration. The term “simple load balancing” here means that
the load balancer uses round robin scheduling where the weight
parameter is determined only by c-node processing performance.
We start by explaining the evaluation setup followed by the
details of each evaluation.

A. Evaluation setup
The SDN controller is built on ONOS 1.3 and we extend it

by implementing the virtual network manager, the app-network
binding and the dynamic application load balancing function.
The physical network is built on emulated OpenFlow switches.
Since the switches work as a component of c-nodes,
communication overheads between the switch and c-node are
relatively low compared to those between c-nodes. The number
of master c-nodes are balanced equally among c-nodes in
advance. The topology of all virtual networks is the same as that
of the physical network.

Elapsed time is measured from submitting a set of path setup
requests to confirming that all paths are installed in the switches.
The requests are submitted by the other app, which works on all
c-nodes to eliminate the influence of client and load-balancer
performance. For simplicity, the requests satisfied the following
properties:

 Endpoints of the path setup request are different ports
of the same switch, consequently apps generate only
one control message per request.

 The destined switches of the requests are equally
balanced among all switches.

The servers for all c-nodes have CPU of 4 core Intel Xeon
CPU E31240 @ 3.30 GHz, and 8 GB of memory is assigned to
the instance of ONOS. All c-nodes are connected to the same
layer 2 switch with 1 Gbps link. The number of switches is 15,
and the number of path requests is 900,000. In all figures from
this point, we show the throughput of the system, which is the
number of path requests divided by the measured elapse time.

B. E1: Evaluation with varying number of polices
This evaluation is intended to evaluate the virtual network

manager and app-network binding function, which are used to
realize the multi-policy controller. In this evaluation the SDN
controller consists of only one c-node. We measure throughput
while varying the number of policies and corresponding
applications and virtual networks. The requests are equally
submitted among all of the applications.

Figure 5 shows that the throughput degrades when
increasing the number of policies. We found that this
degradation was caused by the overheads of handling
completion messages denoted by (i) in Figure 3. This problem
heavily depends on the current implementation of the virtual
network manager and app-network binding function which
create the same number of instances of the component to handle
the completion messages as the number of virtual networks. The
completion message from the physical network manager is
broadcasted to all of the instances, and the instances use a lot of
time to filter irrelevant messages. In the evaluation later, we
evaluate the system with one virtual network and one kind of
app to avoid this performance degradation.

C. E2: Evaluation of simple load balancing
In this evaluation, we measured the throughput of the SDN

controller with the simple load balancing where the weight
parameter of the round robin scheduling is determined only by
c-node processing performance. The number of working c-
nodes varies from one to the total number of c-nodes, which is
three or five. Since all servers for c-nodes have the same

processing performance, the weight parameters of all working c-
nodes are the same.

Figure 6 shows that the result of the evaluation with three
and five c-nodes clusters. From this figure, we can find that the
throughput is increasing when increasing the number of working
c-nodes in both cases. It indicates the loads of CPU-bound tasks
are equally balanced among c-nodes and the load for every c-
node is decreasing. However, the increasing amount of the
throughput by adding one c-node becomes lower when
increasing the number of working c-nodes. This result indicates
that the influence of I/O-bound tasks becomes relatively larger
than CPU-bound tasks. We consider the reasons of this is that
inter-c-nodes messages don’t decrease when increasing the
number of running c-nodes with the simple load balancing.

D. E3: Evaluation of dynamic load balancing
We evaluated the improvement of the throughput with the

dynamic load balancing. As described in Section IV this
function works to maximize direct messages, we measured
throughput when varying the ratio of it. To change the ratio, the
path setup requests are intentionally created by sniffing the
mapping information between virtual and physical switches and
the master c-nodes. For example, to configure the ratio to 1.0,
requests are always directed to the master c-node of the destined
physical switch of the requests.

Figure 5 Performance when varying number of

policies

Figure 6 Performance when varying the number of

working c-nodes

Figure 7 Performance when varying ratio of direct

messages

Figure 7 shows that the result of this evaluation with three
and five c-nodes clusters. In this evaluation, apps are running on
all c-nodes, this result can be compared with that of E2. For
example, the result of the number of working c-nodes of “5” on
“5 c-nodes” line in Figure 6 is the same as that of the ratio of 0.2(= 1/5) of “5 c-nodes” line in Figure 7, where both points
are denoted by (A). From this figure, we can find that the
throughput becomes larger when increasing the ratio of direct
messages. The improvement of the ratio by our algorithm is
depends on characteristics of applications, network topology,
customer behavior, etc., however, this result indicates our
algorithm shows better performance than the simple load
balancing by reducing inter-c-node messages.

VI. CONCLUSION

 In this paper, we described an architecture of the distributed
SDN controller which can handle multiple customer apps, and
can work together with external server load balancers. We
proposed an algorithm to optimize the weight parameter of the
load balancer dynamically to reduce inter-c-node messages.
Experimental results show that our method increases the
performance of the controller. However, there are still
possibilities to make the algorithm better. For example, this
algorithm assumes that the loads of processing one request are
the same among all kinds of apps. This assumption should be
removed to deploy SDN in realistic and practical environments.

Moreover, evaluation on how many inter-c-nodes messages can
be reduced by our algorithm is required. It is still necessary to
improve performance and scalability of the distributed SDN
controller to deal with multiple policies. For example, an
architecture of handling notification messages from the physical
network manager should be improved so as not to degrade the
performance when increasing the number of virtual networks.
We plan to improve the performance of the SDN controller by
addressing these problems.

REFERENCES
[1] Open Networking Foundation, “Software-Defined Networking: The New

Norm for Networks,” ONF White Paper April 13, 2012.

[2] Open Networking Foundation, “OpenFlow Switch Specification Version
1.3.4 (Protocol version 0x04),” March 27, 2014.

[3] K. Hikichi, S. Shimizu, A. Yamada, and T Somiya, “Study on Scalability
for Distributed SDN Controller,” Technical Report of 13th IEICE NV,
Mar 17, 2015 (in Japanese).

[4] S. Shimizu, A. Yamada, and T Somiya, “Study on Scalable Messaging
System for Distributed SDN Controller,” IEICE Tech. Rep., vol. 113, no.
472, NS2013-212, pp. 207-212, March 2014 (in Japanese).

[5] P. Berde et al. "ONOS: Towards an Open, Distributed SDN OS," In Proc.
of ACM HotSDN 2014, Aug. 2014.

[6] A. Dixit, F. Hao, S. Mukherjee, T.V. Lakshman, and R. Kompella,
“Towards an Elastic Distributed SDN Controller,” Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, Oct. 2013.

