
Packet Cache Network Function for Peer-to-Peer
Traffic Management with Bloom-Filter Based Flow

Classification
Kengo Sasaki∗†

∗ Toyota Central R&D Labs., Inc., Aichi, Japan
Aichi, Japan

Email: sasaki-ken@mosk.tytlabs.co.jp

Akihiro Nakao†
† The University of Tokyo

Tokyo, Japan
Email: {sasaki,nakao}@nakao-lab.org

Abstract—Following the emergence of peer-to-peer (P2P) ap-
plications, millions of computer users have used P2P systems to
search for desired content. P2P traffic is known to be highly
redundant because of its inherent self-scaling characteristics,
which means that file sharing is performed more efficiently when
more users exchange the same content. To remove redundant
P2P traffic, we have proposed a method to control the P2P traffic
through a packet-level data cache that acts as a network function
at the edge of the Internet service provider (ISP) networks [1].
However, our previous method involves high levels of memory
consumption.

Software-defined networking (SDN) and network functions
virtualization (NFV) are representative trends in network soft-
warization that may lower the barrier to deployment of network
management functions that are considered to be useful but are
difficult to actually implement and deploy.

In this paper, we propose a new flow classification for P2P
that uses a queue Bloom filter (QBF) to reduce the memory
consumption of the P2P cache. The QBF is a time series queue
that manages Bloom filters and it can remove inserted Bloom
filter elements without generating false positives. If the router
can confirm that P2P flows are carrying duplicate contents using
QBF, it then begins to cache the duplicate content. Our analysis
shows that the proposed method reduces memory consumption to
67% and improves the P2P cache hit ratio by 4% when compared
with the previous approach, while its performance in removing
redundancy from the P2P traffic is degraded by only 14%. In
addition, we discuss the implementation and deployment of the
proposed system at the edge routers of ISP networks by applying
SDN and NFV.

Index Terms—P2P, Overlay Network, Cache System, Bloom
filter, SDN, NFV

I. INTRODUCTION

Following the emergence of peer-to-peer (P2P) applications,
such as BitTorrent [2] and PPTV [3], millions of computer
users have used P2P systems to search for desired content.
P2P networks have also demonstrated considerable potential
to become a popular network tool for use not only in file
sharing but also in video streaming [4] or to act as contents
delivery networks (CDNs) [5] on the Internet. While there
is a prediction that P2P traffic for file sharing applications
will not increase in the future [6], it still represents today a
significant fraction of the Internet traffic in Asia at present
[7]. In particular, BitTorrent accounts for 48% of fixed access

ISP Network ISP Network

Transit Networks

Data A Hash A DataA

Cache

Cache

SDN/NFV

SDN/NFV

ISP Network

DataB

Cache
SDN/NFV

Hash B
DataB

Fig. 1. Overview of packet-level data cache. The proposed system can be
implemented and deployed at the edge routers by applying SDN and NFV.

upstream traffic in Asia. However, most P2P-based systems
are designed without any awareness of the network topology
and generate a large amount of Internet service provider (ISP)
traffic that transports the same content repeatedly.

To remove the redundancy from P2P traffic, we have pro-
posed a method to control P2P traffic through a packet-level
data cache located on the router [1], [8]. When using the pre-
vious method, more than 95% of the packets are compressed
to less than 35 % in bytes of their original size. However,
the previous method requires high memory consumption. It is
preferable to reduce the memory consumption to enable scal-
ing of the system as the traffic volume increases. Therefore,
the router needs to detect flows that include redundant content
before caching the P2P traffic.

Network softwarization is an overall transformation trend
for the design, implementation, deployment, management and
maintenance of network equipment and network components
through software programming, using software characteristics
such as flexibility and rapidity of design, development and de-
ployment throughout the life cycles of the network equipment
and components [9]. Software-defined networking (SDN) [10]
and network functions virtualization (NFV) [11] are repre-
sentative trends in network softwarization that may lower the
barriers to deployment of network management functions that
are considered useful but are difficult to actually implement

© Copyright IEICE – The 18th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2016 

 



Internet

ISP BISP A

Cache

Peer A

Peer B

INGRESS EGRESS

Cache

Packet #1

Packet #2

Packet #1

Packet #2

Hash Value
#1
#2
#3
#4

Hash Value Data
#1 Data Piece #1
#2 Data Piece #2
#3 Data Piece #3
#4 Data Piece #4

Compress
(Replace Data Piece with Hash Value)

Packet #1

Packet #2

Prefix Pattern

Data 
Piece 2

Data 
Piece 1

Data 
Piece 4

Data 
Piece 3 #4 #3

#2 #1

Decompress
(Replace Hash Value with Data Pieces)

Data 
Piece 2

Data 
Piece 1

Data 
Piece 4

Data 
Piece 3#4 #3

#2 #1
Packet #1

Packet #2

#4 #3 #2 #1

Fig. 2. Detailed view of packet-level data cache.

and deploy. One example of such a network management
function is packet cache, often observed in P2P applications.

In this paper, we propose a new flow classification for
P2P using the queue Bloom filter (QBF) to reduce the P2P
cache memory consumption. The QBF is a time series queue
that manages Bloom filters [12] and can remove elements of
inserted Bloom filters without generating false positives. When
the router receives content, the router memories the contents
on QBF. By referring to the QBF, if the router can confirm
that the P2P flows are transporting duplicate content, it then
begins to cache the content of these flows. In addition, we
discuss whether the proposed system can be implemented and
deployed at the edge routers of ISP networks by applying SDN
for flow classification and NFV for the packet cache function,
as shown in Fig. 1.

Based on an analysis using a P2P traffic trace, we show that
our proposed method reduces memory consumption to 67% of
that for the previous method, and improves the P2P cache hit
ratio by 4% compared with the previous approach, while the
redundancy removal performance in the P2P traffic is degraded
by only 14%.

This paper is organized as follows: Section II describes the
background for the work in this paper. Section III proposes
a flow classification using the QBF. Section IV evaluates and
compares the performance of a simple P2P caching method
and the proposed method using a BitTorrent traffic log. In
Section V, we discuss the implementation and deployment
using SDN and NFV. Section VI describes the related work
in this field. Section VII provides brief conclusions.

II. BACKGROUND

In this section, we explain both our previous cache method
and the Bloom filter.

A. Previous work

Our previous method [1], [8] involves a network layer
caching architecture that improves packet delivery for overlay
P2P applications. Fig. 2 shows the packet-level data cache in
detail. These cache systems are deployed at the edge routers,
which are referred to here as INGRESS and EGRESS, between

the ISPs and the Internet. When the edge router receives a
P2P packet, it divides that packet into data pieces based on
prefix patterns. If a data piece is transported first in EGRESS,
EGRESS caches a mapping between a hash value and the
data piece on the memory and then transports that hash
value to INGRESS. When INGRESS receives the hash value,
INGRESS caches the value. In turn, when INGRESS receives
a P2P packet and constructs data pieces, INGRESS checks
the cache. If the appropriate hash value exists in the cache
of INGRESS, the data piece is replaced with that hash value.
This replacement process is referred to as “compression”. By
transporting these “compressed” packets between the ISPs,
the P2P traffic is reduced. If the compressed packets are
transported in EGRESS, then the hash values in the packet
are replaced with the data pieces in the map of the router.
This replacement process is referred to as “decompression”.

We built a prototype of the compression/decompression
method and demonstrated that more than 95% of the packets
are suppressed to less than 35 % of their size in bytes when
compared with the original size, which required high levels of
memory usage [1].

To reduce the memory consumption of the P2P cache, we
introduce a new flow classification method based of use of
the QBF on EGRESS. By selecting the flows that forward
duplicate data pieces, EGRESS can cache only the required
data pieces and reduce memory consumption.

B. Bloom Filter

The Bloom filter [12] is a bit array that is used to test
whether or not an element is a member of a set. The key idea
behind the Bloom filter is the use of hash functions. These
hash functions map the elements to uniform random numbers
within the size limit of the bit array.

For example, we consider a Bloom filter that is used to
test whether or not an element y is a member of a set S =
{x1, x2, . . . , xn}. The Bloom filter size is m bits, the number
of hash functions is k and the hash values of an element xi ∈ S
are h1(xi), . . . , hk(xi), which are in the range 1, . . . ,m. The
initial state of the Bloom filter is set to 0. First, the Bloom filter
is inserted S. In the case of insertion of an element xi ∈ S,
the bits hj(xi) are set to 1 for 1 � j � k. A location value
can be set to 1 multiple times, but only that first change has
an effect. The check is then performed to determine whether
y is a member of S or not. If all hi(y) are set to 1, then y is
judged to be an element in S and we call a “ Hit”. Otherwise,
y is clearly an element that is not part of S.

The Bloom filter can be used to represent sets with low
memory consumption. However, the Bloom filter has two
intrinsic problems. The first is false positive, i.e., the Bloom
filter may judge an element y to be in S, even though it is
not. Because these elements are inserted into the Bloom filter,
it then has a high false positive ratio. The other problem is
updating. The Bloom filter cannot remove elements without
creating false negatives. To overcome these problems, we
propose the QBF, which can remove the old elements without



Fig. 3. Data structure of queue Bloom filter.

generation of false negatives, and use the QBF for flow
classification.

III. PROPOSED METHOD

In this section, we propose the QBF and the flow classifi-
cation process when using it.

A. Queue Bloom filter

The QBF is a time series queue that manages Bloom
filters. Fig. 3 shows the QBF data structure. A Bloom filter
is enqueued in the QBF at every TQ. When the number of
Bloom filters in the QBF is more than NQ, the oldest Bloom
filter in the QBF is then dequeued from the QBF. In the case
of insertion of new elements into the QBF, the elements are
inserted into the newest Bloom filter in QBF. In the case of
checking of the new elements in the QBF, all Bloom filters in
the QBF are checked.

A simple Bloom filter cannot remove any elements without
generating false negatives. In contrast, QBF can remove old
elements using a small step (TQ) without generating false
negatives. The update structures of the Bloom filter were
proposed in [13]–[15] and we explain these structures in
section VI.

B. P2P Flow Classification using the QBF

Our flow classification process selects flows that are trans-
porting duplicate content. In this paper, the flow is composed
of a source IP address/port and a destination IP address/port.
Our flow classification is run on EGRESS, as shown in Fig.
2. EGRESS monitors each flow using a QBF.

Fig. 4 shows the P2P flow classification algorithm. When
EGRESS receives P2P packets that have the required prefix
patterns, EGRESS constructs data pieces and checks for data
pieces that follow the prefix patterns. If a data piece is not a
hit, EGRESS inserts that data piece into the QBF. Otherwise,
EGRESS counts the number of hits in the flow. If the number
of hits in the flow is more than Nbf , EGRESS assumes that
the flow is transporting duplicate content and begins to cache
the data pieces of the P2P flow.

Fig. 5 shows an example of the flow classification process.
In this example, the data pieces are inserted into a simple
Bloom filter rather than the QBF and Nbf is 2. EGRESS
receives the packets in numerical order from (1) to (5). When
EGRESS receives packets (1), (2) and (3), EGRESS checks

1: C[∗] := A hit counter for each flow
2: Nbf := A threshold value of hits for beginning to cache
3: loop
4: A P2P packet received
5: fl := A flow of the P2P packet
6: if The P2P packet includes the prefix pattern then
7: Construct data pieces
8: dpfx := A data piece following the prefix pattern
9: if EGRESS does NOT know flow fl then

10: C[fl] := 0
11: end if
12: if dpfx is hit then
13: C[fl] + +
14: if Nbf <= C[fl] then
15: Beginning to cache
16: end if
17: else
18: Insert dpfx into QBF
19: end if
20: end if
21: end loop

Fig. 4. P2P flow classification algorithm.

Fig. 5. P2P flow classification using Bloom filter.

the data pieces in the Bloom filter, which is in flow A, and the
data pieces are not hit. Therefore, EGRESS inserts these data
pieces into the Bloom filter. When EGRESS receives packet
(4), EGRESS checks the data pieces in the Bloom filter, which
is in flow B, and the data piece is a hit. Therefore, the number
of hits of flow B is 1. When EGRESS receives packet (5), it
checks the data pieces in the Bloom filter, which is in flow
B, and the data piece is again a hit. Therefore, the number of
hits in flow B is 2 (= Nbf ) and EGRESS begins to cache the
data pieces in flow B.

IV. EVALUATION

To evaluate the proposed method, we simulate EGRESS
with and without the flow classification. We analyze
anonymized packet log data (100GB) from BitTorrent [2],
which was recorded over 8 h by an ISP backbone router.
We evaluate the data in terms of three metrics, which are (i)
memory consumption, (ii) cache hit count, and (iii) cache hit



ratio, and use three evaluation methods, which are (i) Pool,
(ii) QBF, and (iii) Pool + QBF.

A. Metrics

“Memory consumption” is defined here as the “size of all
cache entries”. “Cache hit count” is defined here as the “the
number of times that the router refers cache entries per unit
time”. “Cache hit ratio” is defined here as “the number of times
that the router refers cache entries per unit time / the number
of data pieces that EGRESS receives per unit time”. The size
of a cache entry is given by a map composed of a hash value
and a data piece. The sizes of a data piece and the hash value
are 1024 bytes and 16 bytes, respectively. Therefore, the size
of a cache entry is 1040 bytes. We calculate the three metrics
above once a minute using the log data. We set the unit time to
be 3000 s, which is equal to both TQ and Tcache, as described
in IV-C.

B. Evaluation Methods

(1) The Pool method [1] caches all data pieces without
flow classification. However, EGRESS cannot continuously
cache all data pieces because it has finite memory resources.
Therefore, EGRESS removes unused data pieces for Tcache s.

The Pool method can cache data pieces rapidly but con-
sumes huge amounts of memory space. This means that the
Pool method is suitable for small-sized flows.

(2) The QBF method caches the data pieces of the flows
that are detected using the QBF. If the number of hits of the
flow is greater than Nbf , EGRESS begins to cache the data
pieces of the P2P flow. As per the Pool method, EGRESS
removes the unused data pieces for Tcache s.

The QBF method can reduce memory consumption by
selective caching. However, it takes time to select the flows
and may possibly overlook data pieces that should be hits.
This means that the QBF method is suitable for large-sized
flows.

(3) The Pool + QBF method uses both the “Pool” and
“QBF” methods. The Pool + QBF method prepares two
memory regions, called PoolMemory and QBFMemory. When
EGRESS receives P2P packets, it caches the data pieces in
the PoolMemory (Pool method). Simultaneously, EGRESS
executes P2P flow classification. If EGRESS detects a flow,
EGRESS then begins to cache the data pieces of the flow
in the QBFMemory (QBF Method). EGRESS removes the
unused data pieces every Ttmp s from the PoolMemory and
every Tcache s from the QBFMemory. Ttmp is a shorter time
than Tcache

The “Pool + QBF” method thus uses the “Pool” method for
small-sized flows and the “QBF” method for large-size flows.

C. Parameters

Table I shows the parameters used for the simulation. Nbf

is a threshold at which addition of a cache entry of a flow
begins. Bbf is the size of the Bloom filter and NQ is the size
of the Queue. Therefore, the QBF uses 1 GB of memory for
flow classification. TQ is the time interval required to enqueue

TABLE I
PARAMETERS FOR SIMULATION

Parameter Value
Nbf 30
Bbf 227[byte]
NQ 8
TQ 3000 [s]
Ttmp 1000 [s]
Tcache 3000 [s]

�

���

���

���

���

���

���

��	

��


���

�

� ���� ���� ���� 
��� �����

�
�
�

�
������������

��
�

���

Fig. 6. Measured CDF as a function of flow size.

and dequeue the QBF. Ttmp and Tcache are the lifetimes of
the cache entries, i.e., EGRESS removes unused data pieces
every Ttmp or Tcache s.

We determine these parameters using traffic statistics. Fig.
6 shows a cumulative distribution function (CDF) of the “flow
size”, which is defined as the byte count that a flow forwards,
in the log data. The X-axis is the flow size (KB), and the
Y-axis is the CDF. Fig. 6 shows that 85% of the flow is less
than a flow size of 500 KB. In section IV-B, we stated that
the Pool method and the QBF method are suitable for small-
sized flows and large-sized flows, respectively. Therefore, we
set the parameters such that the “Pool + QBF” method can
cache flows of less than 500 KB with the PoolMemory and
flows of more than 500 KB with the QBFMemory. In our log
data, the median of the number of data pieces followed by a
single prefix pattern is approximately 18. If Nbf is 30, the QBF
method covers flows with sizes of more than 30 ∗ 18 ∗ 1024 =
540 ≈ 500KB. Therefore, we set Nbf to be 30.

Fig. 7 shows the relationship between the flow size and
the “flow life time”, which is defined as the time required
to receive all packets from a flow. The X-axis is the flow
size, and the Y-axis plots the median flow life-time value for
each flow size. We then decide Ttmp, TQ and Tcache based
on the flow life time. In Fig. 7, if the flow size is less than
500 KB, the flow life time is less than 1000 s. Thus, we set
Ttmp = 1000s. However, when the flow size is large, it is
difficult to determine an accurate median flow life-time value.
Therefore, we set TQ = Tcache = 3000s, because 95% of all
flows have lifetimes of less than 3000 s.



�

�

��

��

��

� � � � � � � � 	

�
�
�
�
��
��
�
	

�
�
�

�
�
	
��
�
�
�


��
�������

��������

�������

������������

(a) Memory consumption vs. time.

�

����

���

����

���

����

���

����

���

����

� � � � � � � 	 


�
�
�
�
�
��
�	
�

�
	
��

��
��������

�������

������

�����������

(b) Hit ratio vs. time.

�

�������

�������

�������

�������

�������

�������

�������

	������

� � � � � � � � 	

�
�
�
�
�
��
�	
��


�
�
	


��
�������

��������

�������

������������

(c) Hit count vs. time.

Fig. 8. Measured memory consumption, cache hit count and cache hit ratio as functions of time.

�

����

����

����

����

�����

�����

� �� ��� ���� ����� ������ �������

�
��
�
��
��
�
��
	
�


�
�


�

��	
��
�������

Fig. 7. Relationship between flow size and flow life time

D. Results

Fig. 8a shows the change in the memory consumption.
The X-axis is time, and the Y-axis is memory consumption.
The QBF and QBF + Pool methods cut the average memory
consumption to 56% and 67% when compared with the Pool
method.

Fig. 8b shows the change in the cache hit ratio. The X-axis
is time, and the Y-axis is the cache hit ratio. The cache hit
ratios of the QBF and QBF + Pool methods show a maximum
improvement of 10 % and an average improvement of 4%
when compared with the Pool method.

Fig. 8c shows the change in the cache hit count. The X-
axis is time, and the Y-axis is the cache hit count. While
both the QBF and QBF + Pool methods can reduce memory
consumption when compared with the Pool method, they also
reduce the cache hit count because of their low memory
consumption. The Pool method contains all cache entries at a
certain point, and the gap from the Pool method to the QBF or
QBF + Pool methods is equal to the missed cache hit count.
Therefore, the QBF method overlooks 29% of the cache hit
count when compared with the Pool method. However, by
using the PoolMemory, the QBF + Pool method can suppress
the missing of cache hits by 14%.

From the above analysis, we have shown that the QBF
method adds cache entries selectively and the QBF + Pool
method effectively covers the cache hit count using PoolMem-

ory and we thus consider the QBF and QBF + Pool methods
to be better than the Pool method. Comparison of the QBF
method with the QBF + Pool method, shows that the QBF
method has a lower cache hit count, cache hit ratio and mem-
ory consumption. This means that the QBF + Pool method
covers small flows and the QBF method does not. Therefore,
if the users need to cover small flows, they should use the
QBF + Pool method. Alternatively, if the users only need to
cover large flows, they should use the QBF method.

V. IMPLEMENTATION AND DEPLOYMENT CONSIDERATION

In this section, we will briefly discuss the implementation
and deployment of the proposed method as a feasibility study.

In this paper, we have proposed a new packet classification
method using Bloom filters to selectively and efficiently per-
form packet caching to eliminate redundant traffic, particularly
that observed in P2P traffic. Both the classification and packet
caching functions have been considered to be difficult to
implement and deploy, because the existing switches and
routers, and even the emerging SDN OpenFlow switches are
not equipped with flexibly programmable data plane elements.

However, the emerging concept of network softwarization
enables flexibility and rapidity in the design, development and
deployment of network equipment and components throughout
the life cycle [9], and include the emerging concept of the
software-defined data plane [16] to enhance SDN data plane
functionality by software programming; this, combined with
the advent of NFV to enable various network functions, should
lower the barriers to the implementation and deployment of the
proposed network management method.

In our approach, we start from the application view point,
i.e., we exercise application-driven thinking. Therefore, to en-
able redundancy elimination in network management for P2P
traffic, we define a new Bloom-filter based flow classification
along with a new packet cache network function. Because of
the basis of this approach, we have not yet fully investigated
how to map this proposal into the current harmonization
architectures of SDN and NFV [16] However, it is clear to
us that to enable a new network management for redundancy
elimination such as that proposed in this paper, we must at
least enhance the data plane elements of the current SDN



architecture and embed the packet cache network functions as
part of the SDN data plane or in the NFV network functions.

One part of our immediate future work is the design of an
overall network management strategy, including the implemen-
tation of our proposed traffic classification and packet cache in
the software-defined data plane and its southbound interface,
using deeply programmable network nodes such as FLARE
[16]. We also plan to design a logically centralized controller
over multiple network nodes that is equipped with these data
plane enhanced SDN components. In the required design,
harmonization of SDN and NFV, or even further unification of
the SDN and NFV concepts may be necessary for softwarized
network management.

VI. RELATED WORK

The Bloom filter [12] has already had various applications
in SDN [17], content-centric networks [18], P2P networks [19]
and various network applications [20]. However, these usages
of Bloom filters in specific applications are different to our
proposed method.

An updated Bloom filter structure has been proposed to
detect data duplication in data stream with low false positive
ratios [13]–[15]. The stable Bloom filter (SBF) [13] is based
on the counting Bloom filter (CBF) and consists of a counter
array, rather than a bit array. When an element is inserted
into the SBF, the k selected counters of the element are set
to the maximum counter value, and the counter values, which
are randomly selected, are decreased by 1 to reduce the false
positive ratio. Although, this leads not only to false positives
but also to false negatives, it stabilizes the false positive ratio
and the false negative ratio [13]. A decaying Bloom filter
(DBF) [14] is another Bloom filter that is based on a CBF. The
SBF reduces randomly selected counter values in the case of
insertion of elements. In contrast, when an element is inserted
into the CBF, all counter values are decreased by 1. As a
result, the DBF can avoid false positives. The time decaying
Bloom filter (TDBF) [15] is similar to the DBF. All counters
are decreased by 1 at constant time intervals, and not before
addition of elements. These update structures can check the
Bloom filter with lighter loads than the QBF. However, the
QBF has a lower false positive ratio than that in related works.

VII. CONCLUSION

In this paper, we have proposed a flow classification method
using a QBF for P2P caching as the target of the network
management functions. The QBF is a Bloom filter equipped
with an updated structure using queues and it can remove older
elements without generating false positives. Our proposed
system can reduce the memory consumption of the P2P cache
and achieves high cache hit ratios by detecting P2P flows
that are transporting duplicate content. Based on our analysis
of the P2P traffic trace at an ISP, we have shown that the
QBF + Pool method reduces memory consumption to 67%
and improves the P2P cache hit ratio by 4% when compared
with the previous approach, while the redundancy removal
performance in P2P traffic is degraded by only 14%.

Our proposed future work is as follows. We intend to
implement an actual system using SDN/NFV for a feasibility
study. First, we will design the overall network management
including implementation of our proposed traffic classification
and packet caching method in software-defined data plane and
its southbound interface, using deeply programmable network
nodes such as FLARE. Second, we plan to design a logically
centralized controller over multiple network nodes that are
equipped with these data plane-enhanced SDN components.
Finally, we plan to deploy the proposed method on a virtual
network and evaluate its performance.

REFERENCES

[1] A. Nakao, K. Sasaki, and S. Yamamoto, “A remedy for network
operators against increasing P2P traffic: Enabling packet cache for P2P
applications,” IEICE transactions on communications, vol. 91, no. 12,
pp. 3810–3820, 2008.

[2] BitTorrent. [Online]. Available: http://www.bittorrent.com/
[3] PPTV. [Online]. Available: http://www.pptv.com/
[4] N. Magharei, R. Rejaie, I. Rimac, V. Hilt, and M. Hofmann, “ISP-

friendly live P2P streaming,” Networking, IEEE/ACM Transactions on,
vol. 22, no. 1, pp. 244–256, 2014.

[5] B. Maggs, “A first look at a commercial hybrid content delivery system,”
in Keynote presentation at 15th IEEE Global Internet Symposium, 2012.

[6] Cisco, “Cisco Visual Networking Index: Forecast and methodology,
2013–2018,” CISCO White paper, 2014.

[7] Sandvine. (2015) Global Internet Phenomena Asia-Pacific
& Europe. [Online]. Available: http://www.sandvine.com/trends/
global-internet-phenomena/

[8] S. Yamamoto and A. Nakao, “P2P packet cache router for network-
wide traffic redundancy elimination,” in Computing, Networking and
Communications (ICNC), 2012 International Conference on. IEEE,
2012, pp. 830–834.

[9] (2015) FG IMT-2020: Report on Gap Analysis (presented at SG13
meeting). ITU-T.

[10] N. McKeown, “Software-defined networking,” INFOCOM keynote talk,
2009.

[11] (2012) Network functions virtualization Introductory White Paper. ETSI.
[12] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.
[13] F. Deng and D. Rafiei, “Approximately detecting duplicates for stream-

ing data using stable bloom filters,” in Proceedings of the 2006 ACM
SIGMOD international conference on Management of data. ACM,
2006, pp. 25–36.

[14] H. Shen and Y. Zhang, “Improved approximate detection of duplicates
for data streams over sliding windows,” Journal of Computer Science
and Technology, vol. 23, no. 6, pp. 973–987, 2008.

[15] K. Cheng, L. Xiang, and M. Iwaihara, “Time-decaying bloom filters
for data streams with skewed distributions,” in Research Issues in Data
Engineering: Stream Data Mining and Applications, 2005. RIDE-SDMA
2005. 15th International Workshop on. IEEE, 2005, pp. 63–69.

[16] A. Nakao, “Software-Defined Data Plane Enhancing SDN and NFV,”
IEICE Transactions on Communications, vol. E98-B, no. 1, pp. 12–19,
2015.

[17] C. A. Macapuna, C. E. Rothenberg, and M. F. Magalhaes, “In-packet
bloom filter based data center networking with distributed openflow
controllers,” in GLOBECOM Workshops (GC Wkshps), 2010 IEEE.
IEEE, 2010, pp. 584–588.

[18] W. You, B. Mathieu, P. Truong, J. Peltier, and G. Simon, “Dipit: A
distributed bloom-filter based pit table for ccn nodes,” in Computer
Communications and Networks (ICCCN), 2012 21st International Con-
ference on. IEEE, 2012, pp. 1–7.

[19] J. Risson and T. Moors, “Survey of research towards robust peer-to-
peer networks: search methods,” Computer networks, vol. 50, no. 17,
pp. 3485–3521, 2006.

[20] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of bloom filters for distributed systems,” Communications Surveys &
Tutorials, IEEE, vol. 14, no. 1, pp. 131–155, 2012.


