
Forwarding Mechanism Using Prioritized
Forwarders for Opportunistic Routing

Taku Yamazaki†, Ryo Yamamoto††,‡, Takumi Miyoshi‡‡,‡, Takuya Asaka∗, and Yoshiaki Tanaka†,‡
† Department of Communications and Computer Engineering, Waseda University

3-4-1 Okubo, Shinjuku-ku, Tokyo, 169–8555 Japan
†† Graduate School of Informatics and Engineering, The University of Electro-Communications

1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182–8585 Japan
‡ Global Information and Telecommunication Institute, Waseda University

3-4-1 Okubo, Shinjuku-ku, Tokyo, 169–8555 Japan
‡‡ College of Systems Engineering and Science, Shibaura Institute of Technology

307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, 337–8570 Japan
∗ Faculty of System Design, Tokyo Metropolitan University

6-6 Asahigaoka, Hino-shi, Tokyo, 191–0065 Japan
Email: taku yamazaki@aoni.waseda.jp, ryo yamamoto@is.uec.ac.jp,

miyoshi@shibaura-it.ac.jp, asaka@tmu.ac.jp, ytanaka@waseda.jp

Abstract—In ad hoc networks, backoff-based OR (opportunis-
tic routing) protocols, which autonomously selects a forwarder
among the potential forwarders based on a random backoff time,
have been proposed. However, each potential forwarder must wait
for the backoff time to avoid packet collisions among receivers.
In addition, the terminal density strongly affects the performance
since the backoff-based OR protocols improve the performance
by using multiple terminals. In this paper, we propose a novel OR
protocol called PRIOR (prioritized forwarding for opportunistic
routing). In PRIOR, a terminal called prioritized forwarder,
which forwards packets without using a backoff time, is selected
among neighbours. In addition, we propose a hop-by-hop
retransmission control that performs the retransmission terminal
selection on the basis of a neighbour relation with the PFs.
Moreover, we introduce an explicit acknowledgement mechanism
on the basis of the difference of hop counts to alleviate the
bad effect of the retransmission control in dense environments.
Finally, we evaluate PRIOR in comparison with conventional
backoff-based OR protocols in computer simulation.

Index Terms—ad hoc networks, opportunistic routing, priori-
tized forwarder, hop-by-hop retransmission control.

I. Introduction

Ad hoc networks are formed distributed by mobile terminals
such as smartphones without relying on any infrastructure.
However, the topologies of the network vary over time due
to unstable wireless communication and terminal mobility.

To adapt to the variations, broadcast-based forwarding
protocols called OR (opportunistic routing) [1] that exploit
the broadcast nature of wireless communications have been
proposed. They can forward packets by using multiple
receivers without relying a specific route.

Backoff-based OR protocols [2]–[4] that make a forwarding
decision based on a backoff time calculated by hop counts
have been proposed for ad hoc networks and wireless sensor
networks. However, they may increase an unnecessary packet
forwarding since their potential forwarder cannot always
forward a packet even if the potential forwarder is the closest

to the destination among the receivers. Moreover, the terminal
density strongly affects their performance since they require
enough neighbours to forward packets.

In this paper, we propose a novel OR protocol named
PRIOR (prioritized forwarding for opportunistic routing) that
selects a PF (prioritized forwarder) on hop-by-hop. The PF,
which is selected by each forwarder among the neighbours,
forwards packets without using a backoff time. In addition,
we propose a sigmoid-based backoff time calculation that
the terminal closest to the destination is always prioritized
to forward packets among the receivers. Moreover, we
propose a hop-by-hop retransmission control that performs
the retransmission terminal selection on the basis of a
neighbour relation with PFs to improve the performance
in sparse environments. Furthermore, we introduce explicit
ACK (acknowledgement) based on difference in hop counts
to alleviate the bad effect of retransmission control in dense
environments.

II. RelatedWork

In this section, we take notice of backoff-based OR
protocols [2]–[4] to discuss an OR for mobile ad hoc networks.
Note that, we will consolidate and/or alter names from the
original papers to make the comparison easily among them.

The backoff-based OR protocols have two routing phases:
discovering a destination called “discovery phase”, and
forwarding reply packets and data packets called “data phase”
respectively. For the routing, every terminal has a table called
“cost table”, which has entries that contain at least an address,
hop count, sequence number, and lifetime. Each receiver
records or updates the entry of the cost table by using packets
only from the reverse path. Therefore, the protocols require to
use a bidirectional flow to do the procedure. In the discovery
phase, if a source does not have a cost entry of a destination,
it performs a request packet flooding towards the destination.

© Copyright IEICE – The 18th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2016

When the destination receives the request packet, it broadcasts
a reply packet towards the source. Here, each receiver forwards
the reply packet with the same way as a data packet since at
least one reverse path has been already established. In the
data phase, upon receiving a reply packet or a data packet,
each receiver r calculates a difference in hop counts δr,

δr = hrd − (hid − 1) (1)

where hid denotes the hop count between the previous
forwarder i and the destination d that was recorded as a hop
count to the destination on the packet during the previous
packet forwarding. hrd denotes a hop count between the
receiver r and the destination d recorded in receiver r’s cost
table. Ideally, if the packet regularly traversed one by one, the
hop count hrd will be equal to the hop count hid minus 1.
Therefore, the receiver r can estimate how many hops close
or far to the destination by calculating the difference δr. After
that, if the potential forwarder receives the same packet during
the backoff time, the potential forwarder regards the packet
as an implicit ACK. Hence, it cancels the packet forwarding
because the other terminal already forwarded the packet. The
specifications of these protocols are described in the following.

SSR (self-selective routing) [3] that calculates a backoff

time on the basis of two types of increasing function has been
proposed. SSR calculates a fixed backoff time according to
whether δr ≤ 0 or not in order to impose the fixed delay on
detour terminals. In addition, it adds the random backoff time
based on increasing functions. In SSR, a forwarder broadcasts
an explicit ACK to cancel unnecessary packet forwarding
when it receives a forwarded packet. The destination also
broadcast the explicit ACK packet instead of the data packet.

SRP (self-selecting reliable routing protocol) [3], the
enhanced variant of SSR has been proposed. SRP gives
receiver on regular path (δr = 0) the highest priority in order
to avoid the variation of the hop count as much as possible.
In addition, a forwarder of the previous packet calculates the
smallest random backoff time in order to avoid collisions
among the previous forwarders. Moreover, in data phase, SRP
uses TTL that is set to hsd plus log2 hsd to reduce unnecessary
detours. Unlike SSR, when a receiver r receives a packet with
δr ranging δr > 1, it ignores the packet since SRP has to make
a route repairing. In other words, SRP does not use more than
2-hop detours without performing the route repair. In SRP,
forwarder twice retransmits a forwarded packet if it has not
acknowledged the packet. When the attempt fails, it performs
a route repair which increases the hop count on its table and
the one recorded in the packet by 2.

LFBL (Listen first, broadcast later) [4] that can choose
a backoff time calculation from several methods. In the
paper, DVR (distance + variance + random) method is
recommended though its specification is not described in the
original paper. Therefore, we will describe LFBL based on a
slotted random method. The slotted random method separates
potential forwarders into two groups according to whether
detour or not. If not, the potential forwarder belongs to the first
slot and it adds the backoff time which is randomized in the

slot. If the potential forwarder is detour terminal, it belongs to
the second slot, and it adds the fixed plus random backoff time
in order to make the priority low. In addition, LFBL restricts
the implicit ACK condition that potential forwarders regard
a data packet as an implicit ACK when it receives the same
data packet with δr ranging δr > 0. When δr is same as or less
than 0, it re-calculates the backoff time br. Unlike SSR and
SRP, LFBL do not have a function of explicit ACK. Therefore,
potential forwarders cancel the packet by only using implicit
ACK.

In the conventional protocols, a potential forwarder cannot
always forward a packet even if it is the closest to the
destination among the others. Therefore, they may cause the
unnecessary detours. In addition, although SSR and SRP use
an explicit ACK to reduce unnecessary packets, their receiver
cannot know whether the sender is further to the destination
than the receiver or not. Namely, the packet may not be
forwarded correctly and it may excessively cancel packet
forwarding. SRP eliminates over 2-hop detoured terminals
instead of having a route repair mechanism. The elimination
can avoid the use of excessive detoured path and may stop the
necessary packet forwarding by restricting a forwarding area.
Furthermore, the conventional protocols have a disadvantage
that the performance strongly depends on a terminal density
since they are basically designed to forward packets using
multiple forwarders.

III. Prioritized Forwarding for Opportunistic Routing

We propose a novel OR protocol called PRIOR (priori-
tized forwarding for opportunistic routing). In PRIOR, each
forwarder specifies a single terminal as a PF (prioritized
forwarder) among the neighbours that forwards a packet
without using a backoff time. In addition, we propose a
sigmoid-based backoff time calculation that always prioritizes
the closest terminal to a destination among receivers.

A. Forwarding Mechanism Using Prioritized Forwarders

As mentioned above, PRIOR uses a PF that is able to
forward packets without using a backoff time. The forwarder
explicitly selects a PF from among its neighbours when it
forwards a packet. PRIOR also requires several conditions
similar to the conventional OR protocols. PRIOR also requires
a broadcast medium and to be used under a bidirectional flow
since each terminal updates a cost entry using a packet on the
reverse path. In addition, PRIOR requires a sender address
to record or update PFs unlike the conventional OR protocol.
In general, datalink layer protocols add the sender address
to a frame header before the frame is transmitted. Therefore,
PRIOR obtains the sender address from the datalink layer
protocol if available. Otherwise, it adds the sender address
into a packet header.

In PRIOR, every terminal has a cost table that contains
cost entries including a destination address, hop count, PF
address, sequence number, and lifetime. The update sequence
of the entry is similar to the conventional protocols. First, each
terminal checks whether it has an entry or not when it receives

a packet. If it does not have the entry, it records the entry to
the source by using the information on the packet. If it already
recorded the entry before, it checks the novelty of the entry
by checking the sequence numbers. If the sequence number
of the entry is smaller than the one of the received packet,
it updates the entry since the packet is new one. When these
sequence number are the same, it checks the hop count. If the
hop count to the source on its table is larger than the one of
the packet traversed, the terminal also updates the entry since
the packet traversed the shorter path.

PRIOR also has a discovery phase and data phase. In
the discovery phase, if a source does not have a cost
entry to a destination, the source performs a request packet
flooding towards the destination and waits the reply packet
from the destination. The request packet contains a source
address, destination address, sender address, traversed hop
count, sequence number, and TTL. On receiving the request
packet, the receiver records or updates its cost entry. When the
destination receives the request packet, it broadcasts a reply
packet towards the source only once. Here, the reply packet
is forwarded with the same way of the data packet since the
reverse forwarding path has already been established at least
during the request packet flooding. If the source does not
receive any reply packet in a certain time, it performs the
request packet flooding with increased sequence number and
TTL to expand the flooding area.

In the data phase, each terminal autonomously makes a
forwarding decision upon receiving a reply or data packet.
These packets contain a source address, destination address,
sender address (if it is necessary), PF address, hop count to
the destination, traversed hop count, sequence number.

Figure 1 shows an example of the packet forwarding
procedure in PRIOR. Upon receiving a data or reply packet,
each receiver checks whether the packet has already been
received or not. If it has not, it checks two conditions. First,
if it coincides with a PF in the packet, it becomes a PF and
it forwards the packet without using a backoff time. If it is
not the PF, it becomes a potential forwarder and it waits
the backoff time based on δr. Note that, We describe the
detail of the backoff time calculation in Section III-B. After
the backoff time calculation, the potential forwarder receives
the same packet during the backoff time, it checks δr of the
packet according to Eq. (1). If δr is larger than 0, the potential
forwarder cancels own packet forwarding since it regards the
packet as an implicit ACK. Otherwise, it ignores the packet.

S

A

B

D Implicit ACK
DATA (PF)
DATA (PF)

AD 2

D 1

D 1Source

Destination

without a backoff

designates A as a PF
with a backoff

Fig. 1. Example of forwarding sequence in PRIOR.

B. Sigmoid-based Backoff Time Calculation
The conventional OR protocols may cause an extension

of hop counts and an increase of unnecessary packet
forwarding since their potential forwarder closest to the
destination cannot always forward first. Then, we propose a
novel sigmoid-based backoff time calculation mechanism that
autonomously prioritize the terminal closest to the destination
among potential forwarders.

In general, we assume that data packets are forwarded
bidirectionally between a source and destination. Then, we
expect that every forwarder can update their cost entries
accurately and regularly. If forwarders directly and stably
communicate each other, they have a neighbour relation. Then,
receiver r calculates δr approximately ranges 0 ≤ δr ≤ 2. In
contrast, if a packet is forwarded via a shortcut or an over
3-hop detoured path due to temporary factors such as the
better radio environments and so on, a receiver r calculates
δr approximately ranges δr < 0 or δr > 2. Therefore, a joint
packet reception probability with the same δr ranges in the
range of 0 ≤ δr ≤ 2 will also be much higher than the one
in the range of δr < 0 or δr > 2. Hence, if the receiver r
calculates δr in the range of 0 ≤ δr ≤ 2, it requires a large
window for the random backoff time to reduce collisions. In
contrast, if the receiver r calculates δr in the range of δr < 0
or δr > 2, it requires smaller window for the random backoff

time to reduce collisions.
By exploiting the above characteristics, receiver r calculates

the fixed backoff time based on a sigmoid function that
converges to 0 or 1 by decreasing or increasing δr respectively,
and adds a random backoff time based on the vertical change
on the sigmoid function. The fixed backoff time ςr(δr) is
calculated as

ςr(δr) =
1

1 + exp
(
−
(
δr − 0.5

)) (2)

The terminal r calculates the fixed backoff time ςr(δr) that
decides the priority based on the sigmoid function according
to δr. Namely, the fixed backoff time ςr(δr) is lower bound
of the backoff time for each δr. For maximizing the random
backoff time of terminals whose δr is 0, we subtract 0.5
from δr. Moreover, terminal r adds a random backoff time
to the fixed backoff time according to a vertical change in the
function. Then, the random backoff time µr (δr) is calculated
as

µr(δr) = u
(
ςr (δr + 1) − ςr (δr)

)
(3)

where u denotes uniform random number of (0, 1). The random
backoff time µr (δr) is based on the difference between ςr(δr +

1) and ςr(δr). Therefore, ςr(δr) plus µr (δr) will always be
smaller than ςr(δr +1). By using ςr(δr) and µr (δr), the backoff

time br is calculated as

br = Tmax

(
ςr (δr) + µr (δr)

)
(4)

where Tmax denotes the maximum backoff time. As mentioned
above, the sigmoid function converges to 0 or 1. Therefore, the

S
AD 2

A

B

D

(1)Packet is forwarded
But B is not PF

on the current path

(2) changes the PF
from A to B

Implicit ACK
DATA (PF)
DATA (PF)

Source Destination

AS 2

D 1
S 1

D 1
S 1

(3) Packet is received
But B is not PF

on the reverse path

(4) changes the PF
from A to B

Fig. 2. Update procedures of a prioritized forwarder.

receiver r calculates the backoff time br with the product of
the scaling factor Tmax and the summation of the fixed backoff

time ςr(δr) and the random backoff time µr (δr).

C. Updating Prioritized Forwarders

In PRIOR, terminals are required to check the existence of
PF in its neighbour range to use the PF correctly. However, the
PF becomes obsolete since it might move out to an ineligible
position to forward packets due to the topological changes
in mobile environments. Therefore, terminals are required to
adapt the topological changes by updating PFs appropriately.
To realize it, every terminal observes that the transmitted
packet is forwarded by the PF on the current path or not and
they checks that the received packet come from the PF on the
reverse path or not. Figure 2 shows an examples of the update
procedure of PF for the current and reverse path.

First, when a forwarder receives the same packet after the
packet forwarding, it checks whether the packet is forwarded
by PF or not. If the packet is forwarded by PF, it does nothing.
Otherwise, it alters the PF to the destination by the sender of
the received packet.

When the terminal receives the packet, it checks the sender
of the packet. If the packet is forwarded by the PF of the
reverse path, in other words, the PF to the source, the terminal
does nothing. Otherwise, the terminal alters the PF to the
source by the sender of the received packet.

IV. Extensions for PRIOR

In this section, we propose several extensions for PRIOR
to alleviate the performance degradation in a particular
situation: (1) area restricted hop-by-hop retransmission control
and (2) explicit ACK mechanism on the basis of the
difference of hop counts. The hop-by-hop retransmission
control restricts the retransmission area on the basis of a
neighbour relation with the PF to improve the performance
in sparse environments. The explicit ACK mechanism cancels
unnecessary packet forwarding and retransmissions on the
basis of the difference of hop counts between the sender and
each receiver to decrease the network load.

A. Restricted Hop-by-Hop Retransmission Control

To overcome the performance degradation in sparse
environments, we introduce an extension of hop-by-hop
retransmission control into PRIOR. The retransmission control

A

B

C

E

S

D

(3) B and C ignore
the ACK

(2) A transmits an ACK

(6) D transmits the ACK
instead of the data packet(5) B designates E as a PF

(4) E transmits
an ACK

Explicit ACK
Implicit ACK
DATA (PF)
DATA (PF)

(1) A receives
a forwarded packet

Source

Destination

Fig. 3. Examples of explicit acknowledgement.

restricts the retransmission area on the basis of the neighbour
relation with the PF to suppress retransmitting packets
excessively.

First, a forwarder checks the neighbour relation with the PF
after a packet forwarding. Then, if the forwarder is the PF or
a neighbour of the PF and its δr is same as or smaller than
1, it initiates a retransmission control. Note that, the terminal
checks the hop count to the PF to examine a neighbour relation
with the PF. If the hop count to the PF on its table is 1,
the terminal regards the PF as a neighbour. Otherwise, it is
not a neighbour of the PF, and hence it does not initiate
the retransmission and discards the kept packet. The terminal
calculates the retransmission backoff time since it should
wait a regular packet forwarding and avoids the collisions.
Therefore, the retransmission backoff time is set to about 3
times as long as the maximum backoff time plus the backoff

time br. When the forwarder r receives the same packet until
the backoff time, it calculates δr. If δr is same as or less than
0, it regards the packet as an implicit ACK and finishes the
retransmission control. If the forwarder has not received the
same packet during the backoff time, it retransmits the packet
since it assumes that there is no forwarder. After that, the
forwarder increases a retransmission count and re-calculates
the backoff time. Then, the retransmission backoff time is set
to large enough to avoid the current packet forwarding. If
the retransmission count reaches the threshold that represents
the maximum retransmission count, the terminal finishes the
retransmission control, discards the kept packet, and ignores
the packet since then.

B. Hop Count Based Explicit Acknowledgement

In the backoff-based OR protocols, a forwarder basically
acknowledges a received packet by receiving a duplicated
packet. However, it consumes network resources since for-
warders forward or retransmit unnecessary packets when
it fails to receive the duplicated packet. To solve the
problem, SSR and SRP perform an explicit ACK transmission.
However, the explicit ACK has disadvantages that all receivers
indiscriminately cancel packet forwarding even if they have
not forwarded the packet correctly. Therefore, it may cause
a deadlock problem. Moreover, PRIOR increases the number
of transmitted packet and the network load if it enables
the retransmission control in dense environments since the
forwarder may fail to acknowledge the forwarded packet.

To overcome the disadvantages of conventional OR pro-
tocols’ explicit ACKs and to alleviate the bad effect of
retransmission control, we introduce an extension of explicit
ACK mechanism on the basis of the difference of hop counts to
suppress unnecessary packet forwarding and retransmissions.
In PRIOR, ACK packet consists of a source address,
destination address, hop count to the destination, and sequence
number. Figure 3 shows examples of explicit ACK packet
transmission for the backward area terminals and that for an
isolated terminal.

If a terminal receives the same packet after the packet
forwarding, it transmits an explicit ACK packet and the
receiver r of the explicit ACK calculates δr. If δr is 0 and
larger, it cancels the packet forwarding and ignores the packet
since then. If δr is less than 0, the terminal ignores the ACK
packet to avoid the deadlock problem. When the destination
receives the data packet, the destination always broadcasts the
explicit ACK packet instead of the data packet even if the
destination has already received the packet before.

If a potential forwarder has not forwarded packet yet
and its neighbours have already finished packet forwarding,
the regular forwarding by the potential forwarder will
be unnecessary. Moreover, if the retransmission control is
enabled, the potential forwarder happens to repeat the packet
retransmission since it misunderstands that the packet is
lost due to the absent of forwarding by the neighbours.
Therefore, in this situation, there is a necessity that someone
stops the unnecessary transmission. Hence, a PF transmits an
explicit ACK if it receives the already acknowledged packet.
By receiving the explicit ACK, the potential forwarder can
acknowledge the packet even if all of neighbours have already
forwarded the packet.

V. Performance Evaluation
A. Simulation Setup

In this paper, we evaluated the performance of SSR, SRP,
LFBL, and PRIOR using QualNet [5] as a network simulator.
Note that in what follows, we call PRIOR with the explicit
ACK PRIOR-E. In this simulation, we observed the impact
of varying the terminal density on the performance. Terminals
were placed randomly in a 1,000 m × 1,000 m simulation
area and the number of terminals was varied from 20 to
200 in steps of 20. Every terminal used IEEE 802.11b and
disabled RTS/CTS (request to send / clear to send). Their
transmission rates were set to 11 Mbps and the communication
range was set to approximately 150 m. A random waypoint
mobility model was used and the moving speed was randomly
chosen from 0 m/s to 10 m/s without using a waiting time.
We generated bidirectional traffic using UDP (user datagram
protocol) and the pair of terminals was randomly chosen from
all of them. The pair transmitted 1 Mbyte data, consisting
of one thousand 1 kbyte packets, each other. We performed
the simulation with and without the retransmission control.
SSR and LFBL cannot use the retransmission control since
they only use broadcast, which ARQ cannot be applied to
in IEEE 802.11 MAC [6]. Furthermore, although SRP has

a retransmission control function, it must be combined with
a route repair. Therefore, as recommended in the paper [3],
we set the maximum retransmission count n to 2 for SRP.
Meanwhile, PRIOR and PRIOR-E can change the maximum
retransmission count n, hence we set n to 0 and 3. Each
cost entry on a cost table timeout was set to 3 seconds. The
maximum backoff time was set to 5.0 ms in SRP, LFBL, and
PRIOR. However, SSR does not have maximum backoff time
since it calculates the backoff time based on linear increasing
functions. Hence, in SSR, the upper bound of the backoff time
was set to 2.5 ms when the δr is 0.

We evaluated these protocols in terms of their (a) packet
transmission success rate, (b) average end-to-end delay, and
(c) total number of transmitted packet. Note that, we do
not include out of order packets in the simulation results.
Moreover, the total number of transmitted packet is normalized
to that of LFBL since the relative ratio is more appropriate than
the actual value to showing the performance.

B. Simulation Results

Figure 4 shows that the packet transmission success rate
of SSR and that of SRP are lower than the other protocols.
This causes that they use an explicit ACK that indiscriminately
cancels all packet forwarding within the ACK sender’s range.
Thus, they impair the path diversity that affects the packet
transmission success rate. On the other hand, LFBL and
PRIOR (n = 0) achieve higher packet transmission success
rate than SSR and SRP. This is because they can get
more opportunities to forward packets since their potential
forwarders acknowledge only the kept packet by receiving
the same packet without relying an explicit ACK mechanism.
PRIOR-E (n = 0) achieves little lower packet transmission
success rate than LFBL and PRIOR. Therefore, excessive
cancelations are also happened in PRIOR-E even though
it alleviates the bad effect of the explicit ACK by using
a hop count. PRIOR (n = 3) achieves the highest packet
transmission success rate among the protocols in the sparse
environment. In such environments, every terminal does not
have adequate number of neighbours to gain a forwarding
path diversity in their communication range. Nevertheless, it
improves the packet transmission success rate by improving
the link reliability using a retransmission control. However,

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140 160 180 200

P
ac

ke
t t

ra
ns

m
is

si
on

su
cc

es
s

ra
te

 [%
]

Number of terminals

SSR (n=0)
SRP (n=2)
LFBL (n=0)
PRIOR (n=0)
PRIOR (n=3)
PRIOR-E (n=0)
PRIOR-E (n=3)

Fig. 4. Packet transmission success rate.

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140 160 180 200A
ve

ra
ge

 e
nd

-to
-e

nd
 d

el
ay

 [m
s]

Number of terminals

SSR (n=0)
SRP (n=2)
LFBL (n=0)
PRIOR (n=0)
PRIOR (n=3)
PRIOR-E (n=0)
PRIOR-E (n=3)

Fig. 5. Average end-to-end delay.

PRIOR (n = 3) significantly decreases the packet transmission
success rate in the dense environment. This is because that
PRIOR requires that each terminal acknowledges packets only
by an implicit ACK since PRIOR disables an explicit ACK
mechanism. Therefore, each terminal requires to receive the
same packet to cancel packet forwarding. Thus, if it fails
to re-receive the packet, it causes misunderstandings and
forwards unnecessary packet. As a result, PRIOR consumes
more network resources in the dense environment and
decreases the packet transmission success rate. In contrast,
PRIOR-E (n = 3) does not happen to degrade the performance
in dense environments. This is because that the network load
decreases to cancel unnecessary packet forwarding by using
the explicit ACK comparing with PRIOR (n = 3).

Figure 5 shows that SSR, PRIOR (n = 0), and PRIOR-
E (n = 0, 3) achieve lower transmission delay than LFBL
and PRIOR (n = 3). The result shows that SSR achieve a
slightly lower transmission delay than the other protocols. As
mentioned above, its explicit ACK indiscriminately cancels
the packet forwarding and it does not have a function of
the retransmission control. In addition, its detour terminals
calculate a large amount of backoff time. As a result, it
decreases the transmission delay since the detour forwarding,
which includes necessary packet forwarding, is difficult to
occur. On the other hand, PRIOR and PRIOR-E use PFs
and the sigmoid-based backoff time calculation that always
prioritizes the closest terminal to the destination among
receivers. This can contribute to suppress the transmission
delay increases without decreasing the transmission success
rate since it becomes to select forwarders appropriately.

Figure 6 shows that SSR and SRP achieve the smallest
total number of transmitted packets among the protocols. As
mentioned above, they indiscriminately cancel the packet for-
warding by explicit ACKs. Therefore, although they decrease
the total number of transmitted packet, they degrade the packet
transmission success rate. PRIOR-E (n = 3) has higher number
of transmitted packet than SSR and SRP. However, it achieves
significantly higher packet transmission success rate than SSR,
SRP, and LFBL. Nevertheless, PRIOR-E achieves the lower
number of transmitted packet than LFBL. This is because that
PFs and the backoff time calculation improve the forwarder
selection mechanism. Moreover, the increment ratio of the

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 20 40 60 80 100 120 140 160 180 200

To
ta

l n
um

be
r o

f t
ra

ns
m

itt
ed

pa
ck

et
s

(n
or

m
al

iz
ed

 to
 L

FB
L)

Number of terminals

SSR (n=0)
SRP (n=2)
LFBL (n=0)
PRIOR (n=0)
PRIOR (n=3)
PRIOR-E (n=0)
PRIOR-E (n=3)

Fig. 6. Total number of transmitted packet.

number of transmitted packet is lower than that of PRIOR even
if it uses the retransmission control in the dense environment.
This is because the explicit ACK of PRIOR-E accurately
cancels the unnecessary packet forwarding.

VI. Conclusion

In this paper, we proposed a novel OR protocol called
PRIOR that uses a PF for the better forwarder selection.
In addition, PRIOR uses the sigmoid-based backoff time
calculation that always prioritizes the potential forwarder
closest to a destination among receivers. Moreover, we
introduce the hop-by-hop retransmission control to alleviate
an effect of terminal density. Furthermore, we proposed an
extension of the explicit ACK on the basis of the difference
of hop counts between a forwarder and its neighbours.

We evaluated the proposed method under various terminal
densities by using the computer simulation. From the
simulation results, the proposed method realizes both the
higher packet transmission success rate and lower number of
transmitted packets. Moreover, the hop-by-hop retransmission
control contributes to the improvement of the end-to-end
packet transmission success rate in most situations and
alleviates an effect of terminal density. Currently, we only
evaluated the impact of the terminal density changes. However,
we assume that PFs of the proposed method is affected of the
topological changes. Hence, there can be a room to discuss
about the other simulation environment.

References
[1] H. Liu, B. Zhang, H.T. Mouftah, X. Shen, and J. Ma, “Opportunistic

routing for wireless ad hoc and sensor networks: present and future
directions,” IEEE Commun. Mag., vol.47, no.12 pp.103–109, Dec. 2009.

[2] G.G. Chen, J.W. Branch, and B.K. Szymanski, “Self-selective routing
for wireless ad hoc networks,” Proc. IEEE Int. Conf. Wireless and
Mobile Comput. Netw. and Commun. (WiMob 2005), vol.3, pp.57–64,
Montreal, Canada, Aug. 2005.

[3] E. Gelenbe, P. Liu, B.K. Szymanski, and, C. Morrell, “Cognitive and
self-selective routing for sensor networks,” Computational Management
Science, vol.8, no.3, pp237–258, Aug. 2009.

[4] M. Meisel, V. Pappas, and L. Zhang, “Listen first, broadcast later:
topology-agnostic forwarding under high dynamics,” Proc. Annual Conf.
of Int. Tech. Alliance (ACITA 2010), London, UK, Sept. 2010.

[5] QualNet, website.
http://web.scalable-networks.com/content/qualnet/

[6] ANSI/IEEE Std. 802.11, “Wireless LAN medium access control (MAC)
and physical layer (PHY) specification,” March 2012.

