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Abstract—Road networks are the most important facility to
the public transportation in modern cities. Governments around
the world allocate large amounts of budgets for the pavement
maintenance every year. In this paper, we proposed a crowd-
sourcing solution to categorize road anomalies into safety related
anomalies such as speed bumps and rumble strips, and dangerous
anomalies such as bumps and potholes. The proposed system is
composed of three parts: a smart probe car crowds (SPC-crowd)
that serve as the anomaly data source; cloud servers that are
the core for the anomaly classification; and application services
that provide various innovative applications to facilitate the
pavement maintenance. To support the crowdsourcing procedure,
in the SPC-crowd side, we proposed cross-SPC techniques by
adopting the underdamped oscillation model (UOM). In the cloud
side, a supervised learning classification model was adopted on
the anomaly data generated from the SPC-crowd. To validate
the proposed system, extensive field trial was performed. The
experimental results shown that our system can facilitate the
pavement maintenance through the crowdsourcing solution.

Index Terms—Smart probe car, crowdsourcing, data mining,
support vector machine

I. INTRODUCTION

Road surface conditions have been a public issue in modern
society. It affects not only the travel experience but also the
driving safety. According to the report from the Ministry of
Transportation and Communications, Taiwan, the governments
have paid several hundred million NT dollars on national
compensation for the accidents caused by poor road surfaces
during last ten years. However, the performance of the project
has always been criticized by the citizens. It is not only
because of the expensive manpower, but also for the inefficient
monitoring by humans. How to maintain road surface in an
efficient and intelligent way is an important issue.

Our proposed system consists of three subsystems: the
smart probe car (SPC)-crowd subsystem, the server subsystem
and the application subsystem. The SPC-crowd subsystem
comprises a crowd of SPCs. An SPC is the dynamic couple
of an ordinary vehicle and a smartphone. The smartphone
mounted on the vehicle executes sensing program to detect
bumping events caused by the vehicle running over road
anomalies. SPCs report detected abnormal events along with
feature data to the server subsystem via wireless Internet
connections for further process. The server subsystem collects
data from the SPC crowd, and then classifies detected events
into two categories: dangerous anomalies and safety related
anomalies. The former includes potholes and bumps which

are caused by the dynamics of weather and constant stresses
of traffic and are needed to be repaired for public safety
concerns; the latter are speed bumps and rumble strips which
are used to alert motorists to slow down. By utilizing the
road anomaly information, the application subsystem can
provide various advanced services. For example, the dangerous
anomaly information is helpful for motorists to pay attention
on dangerous road condition ahead. The dangerous anomaly
information is also useful for the government to arrange long-
term maintenances.

Many solutions based on mobile sensing technologies have
been proposed to detect road anomalies in the past few years.
In the perspective of detection methods, it can be categorized
to detection by vehicle vibrations [1], [2], [3], [4], [5], [6],
[7], image processing [8], [9] and ultrasonic [10]. However, to
obtain high accurate results, an expensive measurement device
is required. Recently, the popularity of smartphones make a
perfect candidate on the application. Nowadays, accelerometer
and GPS are the basic equipment for the smartphone. In
addition, the increasing computing power, storage and rich
wireless connectivity make smartphones possible to cope with
the road anomaly detection problem both in low cost and
crowdsourcing manner.

Note that most of literature works only focus on the
detection of road anomalies and seldom talk about anomaly
classification. The safety related anomalies such as speed
bumps and ramble strips are used to alert dangerous road
conditions ahead. In the point of view from road pavement
managers, the safety related anomalies should not be treated
as dangerous anomalies.

In this paper, our proposed system has several features.
First, the crowdsourcing concept is achieved by the SPC
crowd. The SPC-crowd as the basic entity of the system
provides a low cost and large scale solution to support the
data source of the system. Second, to support cross-SPC road
anomaly detection, the anomaly ranking mechanism based on
the underdamped oscillation model (UOM) is adopted [5].
Finally, by the crowdsourced data from the SPC-crowd, the
server subsystem is able to classify the road anomalies into
dangerous anomalies and safety related anomalies by adopting
the machine learning tool. In summary, our system improve
the efficiency of automatic road quality monitoring.
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II. RELATED WORKS

For methods by vehicle vibrations, [1] proposed a public
transport network which makes use of buses as the carrier
of sensors to sensing road anomalies on the road surface.
In [2], the pothole patrol system was proposed with five
filters to cope with the speed, sudden acceleration, veering,
braking, subtle changes of sensor orientation and horizontal
movements. However, the system only considers a fixed sensor
orientation scenario. In [5], [6], [7] combine the smartphone
and the vehicle into a smart probe car. It’s the most popular
method adopted in the literature. And in our paper, the
detection method is based on [7].

For methods by image processing, it requires a camera
installed on vehicles and capture images of road surfaces [8],
[9]. The limitation of this kind of methods is that the quality
of detection result affected significantly by the angle of the
camera and the weather.

For methods by ultrasonic, an ultrasonic transducer is
equipped on vehicles [10], the ultrasonic waves are con-
tinuously emitted to the road surfaces and the anomalies
are detected by the reflection time. However, to obtain high
accurate results, an expensive measurement device is required.

III. CROWDSOURCING-BASED ROAD ANOAMLY
CLASSIFICATION SYSTEM

A. System Architecture

As illustrated in Fig. 1, the proposed system comprise three
subsystems.

Fig. 1. The system architecture.

For the SPC-crowd subsystem, the vehicle embedded with
GPS and G-sensors keeps sensing the vibrations when the
vehicle is moving. And the road anomalies detection algorithm
is based on the Underdamped Oscillation Systems (UOM),
which is used to model the waveform during the duration of
the vibrations. Then the bump index (BI) can be calculated
from the ratio of the standard deviation of the anomalistic

road and the normal road which can be deduced from the
UOM. For the sever subsystem, the features will first be
extract form the raw data, then the support vector machines
(SVM) is used to classify the detected road anomalies into
safety related anomalies and dangerous anomalies. At last, for
the application, web services and assistance services will be
provided to the users.

B. Processing flow

Figure 2 illustrates the processing flow of the system.

Fig. 2. The processing flow of the system.

The workflow of our proposed system is showing as follow:
first, in the SPC-crowd subsystem, we attach the smartphone
in the front of the vehicle, prevent it from the unnecessary
vibration. And we run the application which will first calibrate
the three-axis of the smartphone, make sure that x-axis points
to the front of the vehicle, y-axis points to the right of the
vehicle and z-axis points to the gravity. Then it starts to collect
vibration from the vehicle, and detects road anomalies. Once
a anomaly is detected, the features of the anomaly is recorded.
If the wireless connection is available, the recorded data will
be sent back to server subsystem for further analysis. In the
server subsystem, the server collect data from all the SPCs
and use Support vector machine (SVM) as classifier, classify
the detected anomalies into dangerous anomalies and safety
related anomalies. The server subsystem will store the result
of the classification in the database for further usage. Finally,
in the application subsystem, we provide a website which plot
all the road anomalies on the Google Map, and user can easily
search the road and see how many pothole on the road surface.

IV. SPC-LEVEL ANOMALY DETECTION

A. Vertical Component Extraction

We observe that the gravity is the major component of the
g-vectors at most time. Therefore, in case the smartphone
is mounted on the rack, by applying principle component
analysis on a collection of g-vectors, we can find the direction
of the gravity.

Let gt denote the running average of the g-vector by time t
over a time period T1. The calculation of gt can be expressed
as

gt = − avg
(t−T1≤s<t)∧(‖gs−gt−‖≤δ)

gs (1)



where δ is a stable threshold to filter out contaminated g-
vectors that are significantly different from the previous run-
ning average. In our implementation, δ is set to 2m/s2. Let
g⊥t denote the VC of the g-vector at time t. Then, we have

g⊥t = 〈gt,gt〉 / ‖gt‖ . (2)

B. Bumping Index
1) Underdamped Oscillation System: An underdamped os-

cillation system, called the Kelvin model, where m, x, v and
a respectively denotes the mass, displacement, velocity, and
acceleration of the object, k is the spring constant of the string,
b is the damping coefficient of the damper, and f = −kx−bv
is the force applied to the object. The deduction details is
showed in [7].

Consider a vehicle running on a road. The springs connect-
ing to tires are compressed as the vehicle hits the anomaly;
the tires then oscillate like a damped system. In this work, we
would like to model the waveform during the duration of the
vibrations by the UOM.

2) Anomaly Event Detection: According to the model
a(t) = Aω2 cos(ωt)e−λt, the standard deviation of the ac-
celeration from t = t0 to t = t1 can be calculated by

σ = A

√√√√√ 1

t1 − t0

 ∫ t0
t1

(
e−λt cos (ωt− θ0)

)2
dt

−
(∫ t0

t1
e−λt cos (ωt− θ0) dt

)2
. (3)

From Eq. 3, we observe that the standard deviation is
proportional to the initial amplitude parameter A and an
integration of a function of cosine over the duration. The
square root part can be viewed as a constant if we fixed the
duration and selected the same θ0. Then the standard deviation
is only related to the amplitude. To detect the bumping event,
we divide the standard deviation during the bumping periods
by the standard deviation during the normal period.

The ratio can be a cross-SPC index on the road anomalies
because the only factor is the amplitude of the vibration. There
are three steps in our detecting algorithm:

1) Divide the data into different speed sets. Each set has
different threshold for detecting. We first identify if the
incoming data may be a suspect of anomaly.

V I =
∆g⊥i
σnormal

> T1 (4)

Where V I is the first index to decide if there is a road
anomaly, ∆g⊥i is the maximum change of z-axis value in
one second, σnormal is the standard deviation of normal
road, and T1 is the threshold in this step.

2) Then we will cut a 0.5 second vibration wave start from
the point which is over the threshold, and calculate the
standard deviation of this interval.

BI =
σevent
σnormal

> T2 (5)

Where BI is the index which indicate a road anomaly,
and T2 is the threshold in this step.

3) If BI exceed the threshold T2, then we mark it as a road
anomaly and record the location and the timestamp.

V. SYSTEM-LEVEL ANOMALY CLASSIFICATION

A. Feature Extraction

After detection, we need to extract features form the wave-
form for further classification. According to the observation,
the waveform of anomaly events have similar pattern: each
waveform consist of a first shock and an aftershock. In Fig.
3 , the first shock is caused by the front wheel running over
the road anomaly, while the aftershock is caused by the rear
wheel. Based on the observation, we pick up the following
feature to train our SVM.

Fig. 3. The waveform of an road anomaly.

1) Phase: if the phase at the start point rise up, the
road anomaly comes out to be a bump. Otherwise, we
consider it as a pothole.

2) Time: The duration of the road anomaly, which can be
the index of the severity.

3) BI: the ratio of the standard deviation of anomaly event
and the standard deviation of normal road.

4) VI: the ratio of the peak of the anomaly and the standard
deviation of normal road.

5) Amplitude: the peak value of the waveform of the road
anomaly.

B. Anomaly Classification

Support vector machines are supervised learning models
with associated learning algorithms that analyze data used for
classification and regression analysis. The principle of SVM
is finding hyper-planes in Rd space which could separate data
into different groups. The formulas which need to be solved
are showing as following:

min
w,b

1

2
wTw (6)

yi
((
wTxi

)
+ b
)
≥ 1 (7)

Where xi , yi, i = {1, ..., n} is the collection of data set,
xi ∈ Rd, yi ∈ {1,−1} and w is normal vector of the plane.

In our case, SVM is a suitable tool to classification road
anomalies into dangerous anomalies and safety related anoma-
lies.



VI. EXPERIMENTAL RESULTS

A. Experimental Setup

To validate our proposed system, we conducted a field ex-
periment in real-world driving environments. We took NCTU
campus as our testing environment, the route is showing in fig..
We ran five times on this route, and each route is 3.5km long
with about 25 road anomalies. Finally, we have data of 17.5km
long route and 119 detected road anomalies. The experiment
equipment sets up is shown below: we use two smart phones
to record data. One is Sony Xperia Z3, which is attached on
the front board of the vehicle and collecting the vibration data
while the vehicle is moving. The sampling rate of the Sony
Xperia Z3 is about 198Hz. The other one is ASUS Padfone,
we attached it on the license plate and used it to film the
ground in front of the vehicle, so we can know what kinds of
road anomalies the vehicle run through during the experiment.
The vehicle we rent is Nissan Livida.

Fig. 4. The test field in NCTU.

B. Experimental Results

After the experiment, we process the collecting data as we
described in sec.III. We use ten-folds cross validation to test
and verify our data, the result of classification is shown in
Fig.. The precision of safety related anomalies is about 88%
and the precision of dangerous anomalies is about 82%. The
error rate of each class is 12% and 18%, it is because of the
pattern of safety related anomalies and dangerous anomalies
may be similar at times, the way to deal with this problem
is collect much more data. In the future work, we are going
to collecting more data for the experiment by crowd-sourcing
and improve the performance of our proposed system.

VII. CONCLUSIONS

In this paper, we presented a crowdsourcing-based road
anoamly classification system. The system is composed of
SPC-crowd subsystem, server subsystem and application sub-
system. We collect crowd-sourcing data from the SPC-crowd

Fig. 5. The result of the experiment.

subsystem, process and classify the data on the server subsys-
tem and show the road information to users at the end. The
experimental results show that the precision of the classifi-
cation on safety related anomalies is 88% and on dangerous
is 82%. In the future, we will improve the performance of
our proposed system and apply real-world crowd-sourcing data
into the experiment.
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