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Abstract—Software Defined Networking (SDN) enables the 
underlying infrastructure to be abstracted from the network 
services and controlled by one or more controllers. If a link or a 
node fails, the switches that can detect the failure have to either 
inform controller to update flow tables or transform the data to 
pre-configured paths to recover the failure. However, existing 
failure recovery approaches mainly consider the recovery delay 
and packet loss, and ignore the storage resources consumption for 
backup paths in case of link or node failure. Moreover, the 
Ternary Content Addressable Memory (TCAM) that stores flow 
entries is expensive and limited with high-energy consumption. 
Thus in order to minimize the consumption of backup resources 
and meet the required failure recovery delay, a backup-resource 
based failure recovery approach is proposed.  Two metrics are 
proposed to grade physical links, and three kinds of strategies for 
different graded links are provided, based on which the approach 
tries to use less flow entries to recover link failure and meets the 
required failure recovery delay, while guaranteeing the reliability 
of the network. Simulations show that backup-resource based 
approach can use as less flow entries as possible to ensure the 
performance of failure recovery and satisfy the required delay of 
important traffic at the same time. Moreover, the approach has 
good and steady performance in networks of different scales and 
connectivity. 

Keywords—SDN; flow entry; failure recovery; data plane 

I. INTRODUCTION 

The research about Software Defined Networking (SDN) 
has got more and more attention from academia and industry 
recent years. One of the characteristics of the SDN is that it 
separates data and control functions of networking devices with 
a well-defined Application Programming Interface (API), which 
claims that the control of the network is realized by the 
centralized controller platform. In the architecture of the SDN, 
the existence of the control plane can make the network 
deployment and configuration more intelligent and simplified. 
With all complex functions subsumed by the controller, switches 
is mainly responsible for managing flow tables whose entries 
can only be populated by the controller [1]. 

Obviously, data plane is the key part for ensuring normal 
operation of the SDN network, thus one of the problems in SDN 
data plane is the failure recovery. Some approaches [2-3] 
propose reactive strategies to solve it. However, none of them 
take into account the latencies due to the communication of 
switches with the remote controller, which may affect the 

quality of service for the businesses with higher request of real-
time and cause the loss of data packets [4-5]. 

With that in mind, there are a number of studies focusing on 
the fast failure recovery in SDN data plane. The approach of [6] 
use the Failover Group Tables proposed by the Openflow 
specification from the version of 1.3 to decrease the failure 
recovery time. In contrast, some approaches [7-8] extend 
Openflow protocol to eliminate the communication with remote 
controller when a link fails. Although it can ensure fast link 
failure recovery, the extension of Openflow protocol has an 
obvious drawback of complexity of implementation. The others 
[9-10] try to overcome the problem of latencies and complexity 
by setting priority for traffic or backup path. However, those 
proactive strategies against link failures have not been explicitly 
studied. Due to the increase of businesses volume and/or the 
scale of network, the calculation amount and the resources 
consumption of switches for failure recovery will increase. 
Furthermore, in Openflow-enabled network, flow entries are 
used to route the flows through its pre-defined paths. However, 
the flow entries are stored in Ternary Content Addressable 
Memory (TCAM), which is an expensive and limited hardware 
with high-energy consumption [11]. For example, N.Katta 
reported that TCAMs are 400 times more expensive [12] and 
100 times more power consuming per Mbit than RAM-based 
storage [13]. Moreover, with the communication traffic 
increasing, the number of flow entries in switches will also 
augment. Eventually, the OpenFlow switch will run out of 
storage space and begin deleting the entries in TCAMs. Network 
latency and packet loss will deteriorate at the same time, and the 
network quality of services (QoS) will also drop [14]. 

In this paper, we propose a failure recovery approach based 
on backup resources to minimize the consumption of storage 
resources of switches, while meeting the required recovery delay 
when link fails. The contribution of this paper is threefold. First, 
we propose two metrics to determine the importance level of a 
link. Second, three kinds of strategies for different graded links 
are provided, based on which we give the formulation of the 
problem and design algorithms to solve the problem. Third, we 
conduct simulations to show the validity of our approach and 
assess the performance in networks of different scales and 
connectivity. 

The rest of this paper is organized as follows. Section II 
discusses the related works. Section III analyzes and defines the 
problem. Section IV introduces the proposed approach. 
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Simulation results are presented in Section V and this paper is 
concluded in Section VI. 

II. RELATED WORK 

 At present, research about failure recovery strategy in SDN 
data plane can be classified into two categories: reactive and 
proactive, which can also be used into control traffic. 

The study of [2] mainly considers reactive strategy, in which 
the controller is entitled to monitor link status in the network, 
and, in case of failure, it calculates a new path for the affected 
demand and replaces or removes flow entries in switches, 
accordingly. In [3] the authors presented reactive and proactive 
mechanisms for control and data traffic in the case of link 
failures of SDN. The results indicate that the failover time for 
proactive and reactive are about 45ms and 70-130ms, 
respectively. And this paper did not consider situations where 
the controller or switches themselves crash.  

However, reactive recovery hardly achieves carrier-grade 
requirement in large scale networks [3], thus proactive recovery 
is studied pervasively for fast failover in SDN data plane. In [15], 
V. Padma and P. Yogesh propose link protection scheme by 
adding fast recovery mechanisms in the switch and controller. It 
avoids controller intervention in the case of single link network 
failures, which reduces not only recovery time but also the 
overhead of the controller. The simulation results showed that 
the scheme performs reasonably better than the existing scheme 
in terms of switchover time. However it increases the number of 
flow entries for backup path relatively. The authors of [7] 
proposed a proactive scheme with OpenFlow extension, called 
OpenState, which can autonomously adapt forwarding rules in a 
stateful fashion. The scheme discussed the computation of 
backup paths, including link congestion level, distance of the 
reroute point from the failure detection point, and level of 
sharing of backup paths by different flows. And the results were 
compared in three aspects with three different network 
topologies. The idea of extending OpenFlow protocol is also 
used in [8], the authors proposed an end-to-end path protection 
scheme by implementing a monitoring function in OpenFlow 
switches, which can autonomously react to failures by switching 
to a precomputed end-to-end backup path, thus the scheme not 
only can reduce processing load on the controller, but also 
achieve data plane fault recovery in a scalable way within 50ms. 
By using the OpenFlow’s Fast Failover Group Table, the authors 
of [6] introduce a failover scheme with preconfigured primary 
and secondary paths. And the backup path is calculated from 
every intermediate switch to destination in case of link failure. 
If a switch has no feasible backup path, it will return packets to 
the previous switch by crankback routing. After restoring link 
functionality, the Group Table reverts to the primary path. In [9], 
the authors proposed a control application of SDN for class-
based traffic recovery with load balancing, and recovery 
mechanisms have been implemented for different traffic class, 
ranging from reactive in case of Bronze traffic to 1+1 proactive 
for Gold traffic. Similar to [9], the authors of [10] also use the 
class strategy to grade the backup paths, in which segment 
protection is used in an Ethernet OpenFlow network for the case 
of link failure and interface failures. The working and backup 
paths are maintained at different priorities, and OpenFlow is 

extended to enable switches to locally react to connected failed 
links automatically without participation of the controller. 

However, all these researches mainly consider the delay and 
packet loss during failure recovery in SDN. Different from these 
related works, we focus on minimizing the consumption of 
storage resources of switches for link failure recovering.  

The proposed failure recovery approach in this paper can not 
only save storage resources, but also meet the required recovery 
delay. Moreover, it can behave well especially when the network 
scale is large. 

III.  PROBLEM FORMULATION 

Firstly, we give an instance of link failure recovery in SDN 
network. As shown in Fig.1, the network has eight OpenFlow 
switches and fourteen links, where the red line is the working 
path between the host H1 and H2. There is no doubt that all 
flows going through the link <S2,S5> will be influenced in case 
of the failure on link <S2,S5>, and the switch S2 can detect the 
failure. There are four alternative backup paths in the network 
for the link failure recovery, which are distinguished by painting 
four different colors. And all of the backup paths are realized by 
configuring flow entries in related switches. The green one goes 
through four switches: S1, S3, S6 and S8, thus they all have one 
additional flow entry respectively. The purple one recovered by 
the detectable-switch S2, and the switches of S2, S4, S7 all have 
to store one flow entry respectively. Both the yellow and blue 
path are the backup paths from the detectable-switch S2 to 
switch S5 that is the next switch of S2 on working path, but the 
blue path has one more switch than the yellow one, thus the blue 
path will generate one more flow entry than the yellow path.  
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Fig.1. An example of SDN network with link failure 

On the other hand, all these flow entries need to be pre-stored 
in related switches, and it may be a burden for the storage of 
flow tables. Since the capacity of TCAMs is limited, and the 
difficulty and complexity of searching specific flow entries will 
arise with the increase of the scale of the network. Thus the 
amount of switches belonging to backup path has a linear 
relationship with the resource consumption for link failure 
recovery, and our work focus on using as less flow entries as 
possible to achieve link failure recovery and aiming to meet 
required recovery delay. 

Based on the above discussion, we formulate an SDN-
network as an undirected weighted graph G=(N,L), where N 
represents the set of all the switches (e.g., OpenFlow switches), 
and L represents the set of all the links among the switches. Let 
F denotes the set of source-destination communication paths. 



For a link l∈L, the total number of the flows going through the 
link l is denoted by FN(l), the bandwidth utilization ratio is 
BUR(l), and BPN(l) presents the number of backup paths going 
through link l. In fact, not all links in a network need to pre-
configure the flow entries of backup paths, thus with the aim to 
minimize the resource consumption for failure recovery and 
satisfy the required delay at the same time, our first job is to find 
which links are the most important, and which links have merely 
influence in case of link failure. In general, we firstly need to 
confirm the importance level of links according to FN and BUR, 
then classify the set of L to three sets that have different priority, 
finally compute backup paths for each set according to the 
corresponding strategy we proposed.  

IV. THE PROPOSED BACKUP-RESOURCE BASED 

FAILURE RECOVERY APPROACH 

In this section, we first explain how to grade the importance 
level of link. And based on the graded links, we define three 
different backup strategies for the three class links. Then we 
propose algorithms to find backup paths for links with different 
grades. 

A. The Importance Level of Link 

In the real networks, the occurrence of link failure is random, 
and because of diverse links, the influence on the network or the 
communication between hosts is also different in case of link 
failure. In order to minimize the flow entries for pre-configuring 
backup paths and achieve required recovery delay in case of link 
failure, we propose metrics to classify the links in a network 
firstly. 

Fig.2 represents the communication path of ten hosts in a 
SDN network, where five flows are differed by dotted lines with 
five colors. There are fourteen physical links between switches, 
which are represented by black solid line. And failure that 
happened on different links may cause diverse grade 
consequences for the network. For example, there are four flows 
get through link <S2, S5>, two flows through link <S5, S8> and 
<S1, S2>, one flow through link <S3, S5>, <S4, S5>, <S5, S6>, 
<S5, S7>, and the rest of links have no flow across at present. If 
link <S2, S5> fails, four flows will be influenced. Similarly, if 
other links fail, the flows going through the link will also be 
influenced. Furthermore, S5 is a kernel node, which the five 
flows all run through it. Thus link <S2, S5> and node S5 both 
are important for the present network.  

Based on this, we rank the physical link so as to adopt 
diverse recovery strategies to implement failover with less 
resources. The evaluation criteria are formulated as follows: ܰܨ௎=1-e(-FN)                                                           (1) 

IMPL=)2ڿ	ܰܨߙ௎ + (1 −  (2)                       ۂ(ܴܷܤ(ߙ

We select two metrics to present the importance level of 
links: FN and BUR, and the value of BUR has represented over 
the link, which is shown in Fig.2. Because of the relationship 
between FN and the importance level of link represented by 
IMPL are not merely the linear, and the effect to the link ranking 
will tend to be stable with the FN increasing, thus we use 
function (1) to transform the original FN to ܰܨ௎  to make it 
suitable for our research scenario. And function (2) represents 
the importance level of link, in which the coefficient α∈ [0, 1] is 

used to adjust the weight of two metrics. Since ܰܨ௎ ∈[0,1] and 
BUR∈ [0,1], thus the scope of IMPL is [0,2], and we set [0,0.6] 
as  level 0, [0.7,1.3] as level 1, [1.4,2] as level 2 to normalize it. 
Furthermore, the higher the number is, the greater the level will 
be. Then the three kinds of grade are regarded as different 
importance level of links. From the explanation above, we know 
the value of FN and BUR of link <S2, S5> is 4 and 0.8 
respectively, thus we can get the IMPL(2,5) of link  <S2, S5>, 
which is 2. Similarly, we can calculate the real value of the 
importance level of link <S4, S5>, <S3, S5>, <S5, S8>, <S2, S3> 
and <S1, S2>, and they are 0.94, 1.14, 1.46, 0.02 and 1.26 
respectively. After the normalization, the value of IMPL of each 
link is:  1, 1, 2, 0 and 1 respectively. 
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Fig.2. An instance of SDN network operation 

B. Backup Strategy 

With the IMPL of each link, we make strategies to reduce 
the storage of flow entries in switches and satisfy the required 
delay. Before describing our backup-resource based approach, 
we propose three different backup strategies for the three kind 
of importance level of link: 

1) Double-Path Strategy: The high-importance level of link 
l in network g=(N,L), denoted as HIL(g), is described as follows: ܮܫܪ(݃) = ሼ݈	|	݈ ∈ ,ܮ (݈)ܮܲܯܫ = 2}																			(3) 
Therefore, HIL(g) is the set of links that the value of IMPL of 
link l is 2, which means the link l has the highest importance 
level so that the flows going through it has the requirements of 
lower latency and higher transmission quality. Thus we apply 
double-path backup strategy to the link l, which provides two 
backup paths that can recover link failure from the detectable-
switch to the next-switch (denoted as NHOP) and the next-next-
switch (denoted as NNHOP) belonging to the working path, and 
the NHOP backup path is the prior one. The strategy can ensure 
that if the link l fails and it is unable to recover normal 
communication from the prior backup path, the flows through 
the link l can be transferred to the NNHOP backup path. 

2) Single-Path Strategy: The middle-importance level of 
link l in network g=(N,L), denoted as MIL(g), is described as 
follows: ܮܫܯ(݃) = ሼ݈	|	݈ ∈ ,ܮ (݈)ܮܲܯܫ = 1}																			(4) 
Where the MIL(g) is the set of links that the value of IMPL of 
link l is 1, which means the link l has the middle importance 



level so that the flows going through it has lower demand than 
the flows through high-importance level links. Thus we apply 
single-path backup strategy to the link l, and we just pre-
configure the NHOP backup path to recover the link failure so 
that the required failover delay can be satisfied. If this strategy 
fails, we trigger the reactive recovery strategy. 

3) Reactive Strategy: The low-importance level of link l in 
network g=(N, L), denoted as LIL(g), is described as follows: ܮܫܮ(݃) = ሼ݈	|	݈ ∈ ,ܮ (݈)ܮܲܯܫ = 0}																			(5) 
Thus the LIL(g) is the set of links that the value of IMPL of link 
l is 0, which means the number of flows going through link l is 
fewer or those flows have no serious demand for the latency or 
packet loss, to which we apply reactive backup strategy. In this 
strategy, backup path is dynamically allocated, but resources 
required by recovery paths are not allocated until a failure occurs. 
Thus, when the failure occurs, additional signaling is required to 
establish the backup path. 

C. Backup-Resource Based Approach 

Given a network G= (N, L) and IMPL, we can construct sets 
with different level, such as HIL, MIL and LIL, by the 
Algorithm1, where each ݈ ∈  will be classified by the value of ܮ
IMPL. 

Algorithm1 Classify links 

Input: G= (N, L), IMPL 
Output: HIL, MIL, LIL 
Procedure: 
1: for l in L 
2:    if IMPL(l)==2 
3:        HIL=l  
4:        else if IMPL(l)==1 
5:            MIL=l  
6:        else LIL=l  
7:        end if 
8:    end if 
9: end for 
We use Algorithm2 to compute the backup paths for links, 

the backup paths are computed by the strategy proposed in IV.B 
according to the IMPL. Specifically, if more than one 
appropriate paths are available, we will select the one according 
to hop, bandwidth and BPN in sequence. Moreover, the variable 
K used in NeworkX [16] can also be configured according to the 
actual situation. 

Algorithm2 Compute backup paths for links 

Input: G= (N, L), IMPL, K, HIL 
Output: L.BestPath, L.SecondPath 
Procedure: 
1: for l in L 
2:    Select K paths with the minimum number of hop  

for link l as NHOP backup path using NetworkX, 
and stored in KPath 

3:    if KPath[0].hop==KPath[1].hop 
4:         Sort KPath by ascending order in bandwidth 
5:         else if KPath[0]. bandwidth== 

KPath[1].bandwidth 

6:             Sort KPath by ascending order in BPN 
7:             L[l].BestPath= KPath[0] 
8:          end if 
9:     end if 
10:    if l in HIL 
11:       NLink=get the remaining links connecting with the 

end node of l 
12:       for nl in NLink 
13:          L[l].SecondPath=select the best 
14:          NNHOP backup path from the source node of l 

to the end node of nl with the same 
compute priority as the NHOP  

15:        end for 
16:    end if 
17: end for 
After computing the backup paths for links by Algrithom1 

and Algorithm2, controller sends the flow entries for failure 
recovery to the related switches. In addition, with the network 
operating, the importance level of links will vary, thus the 
controller monitor the FN and BUR once every time T, in our 
work we set T as 5ms, and if the real time value of IMPL is 
different from older value, then update the backup paths. 

V. PERFORMANCE EVALUATION 

 In this section, we conduct simulations to verify our 
approach. We let Nb present the total number of flow entries for 
backup paths, and let Nw present the total number of flow entries 
for working paths. The value of Nb varies with different 
recovery approaches, thus we first compare our approach with 
two existing approaches mainly in terms of the value of Pb = 
Nb/(Nb+Nw). Then we evaluate the performance of our 
approach with different scales and topologies. 

A. Comparison with Existing Approaches 

 In order to verify the validity of our approach, denoted as 
IML, we compare it with two typical existing approaches: the 
approach proposed by Capone, A et al. (denoted as DP) [7] and 
the approach proposed by Adrichem, Niels L. M. Van et al. 
(denoted as CR) [6], which are described in TABLE I. Moreover, 
we first select the German Backbone Network Topology from 
SNDlib [17], which has 14 switches and 21links. And we divide 
the switches in two sets: edge switches and core switches. Edge 
switches act as source and destination of flows while core 
switches are only in charge of routing. We assume that the 
failure probability of each link is same, and the biggest 
bandwidth of each link is 1024M. 

 
Fig.3. The value of Pb with different number of edge switches 
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TABLE I.      THEREE FAILURE RECOVERY APPROACHES 

Approach Failure Recovery Strategy

IML Physical links is graded to three kinds of levels, and each link uses different backup strategy that we proposed. 

DP The “crankback” routing strategy are used when link failure [7].

CR The backup path is calculated from every intermediate switch to destination in case of link-failure, and primary and secondary paths are 
preconfigured [6]. 

In order to assess the performance of resource consumption 
for configuring the backup paths, we first set the percentage of 
edge switches as 20%, 40%, 60% and 80%, and we collect the 
data of Nb and Nw, then we can get the value of Pb with 
different percentage of edge switches. As we can see from the 
Fig.3, the value of Pb in DP and CR is between 60% and 75%, 
which is greater than IML. Moreover, with the number of edge 
switches increasing, the value of Pb is basically flat both in DP 
and CR. However, our approach IML gradually levels off after 
the value of Pb decreasing, because IML only consider the 
physical link, and the backup paths are independent of flows. 
Therefore, even though the number of backup flow entries 
varies with the number of flows augment, the value of Pb 
reduces in comparison with DP and CR. 

 
Fig.4. The value of Nl/Nb with different link sets 

In order to test the number of flow entries in each set 
accounted for the proportion of the flow entries for backup paths, 
we select 40% of all switches in the topology as edge switches, 
and set the coefficient α as 0.4, then we observe how many flow 
entries each approach will pre-configure for failure recovery. 
We gather the stored flow entries for backup in the set of HIL, 
MIL and LIL respectively, and we let Nl represent the total 
number of flow entries in one of the sets. The result is shown in 
Fig.4, we can find that the value of Nl/Nb in CR and DP is of 
about the same at each kind of set, since they do not class the 
links, which cannot take different recovery strategies to links 
belonging to different sets. And whether the backup paths for 
link is pre-configured or not is largely up to flows going through 
the link, thus the value of Nl/Nb in the set of LIL in CR and DP 
is lower than other sets. Moreover, the controller does not need 
to pre-configure backup paths for the links in the set of LIL, thus 
in IML, the value of Nl/Nb in the set of LIL is zero. 

Then we evaluate the three approaches in different networks, 
we use BRITE [18] to randomly generate networks with the 

number of switches from 10 to 190. In Fig.5, we set α as 0.4 and 
the connecting probability between any two switches as 50%, 
and compare IML with other approaches. We can find that when 
the number of switches increases, the value of Pb almost stays 
at around 60% and has no large floating in DP and CR. However, 
it gradually reduces in IML, and the overall value lower than 
other approaches. The reason is that with the scale of network 
increasing, the flows will increase to satisfy greater business 
volume, then the number of flows going through the same link 
will augment, which is a good news for IML, because IML just 
compute backup path once for a physical link, thus it will save 
more storage resources of flow table in this case. 

 
Fig.5. The value of Pb in three approaches with different number of switches 

B. Performance in Different Networks 

We also evaluate our approach in networks with different 
scales. In Fig.6 and Fig.7, we set the edge switches as 40%. 

Firstly, we set the value of α as 0.2, 0.4, 0.6 and 0.8 to 
observe the number of flow entries for pre-configuring backup 
paths in our approach. We can find in Fig.6 that with the number 
of switches increasing, all values of Pb decrease in different α. 
Because with the number of switches and business volume 
increasing, the number of flows going through the same physical 
link will augment, and the backup paths for the physical link 
failure recovery only compute once, thus the flow entries for the 
link recovery will reduce a lot. Moreover, when the number of 
switches is more than 70, the value of Pb keeps lowest in α=0.4 
than others. 
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Fig.6. The value of Pb with different value of α 

In order to observe the influence on the value of Pb with 
different connecting probability between any two switches, we 
set the connecting probability between any two switches as 40%, 
60% and 80%. The result is shown in Fig.7, we can find that as 
the connecting probability gets smaller, more flow entries are 
needed to pre-configure the backup paths. Because when the 
connecting probability gets smaller, the average hops between 
any two switches may get bigger, more flow entries are needed 
to recover the link failure. In addition, no matter how big the 
connecting probability is, the value of Pb reduces with the scale 
of network increasing, which means our approach has good 
performance for resources consumption in networks of different 
scales and connectivity.  

 
Fig.7. The value of Pb with different connecting probility 

VI.  CONCLUSION 

In this paper, we have investigated the single link failure 
recovery problem in SDN. The deficiencies of existing 
approaches are summarized. In order to minimize the flow 
entries for backup paths and meet the required failure recovery 
delay, we propose a backup resource-based failure recovery 
approach. We first propose two metrics to determine the 
importance level of a link. Then we propose three kinds of 
strategies for different graded links, based on which we give the 
formulation of the problem. We also design algorithms to find 
adaptive backup paths for links with less flow entries. 
Simulations show that our approach can reduce flow entries for 
link failure recovery, and meet the required delay of the 

important traffic at the same time, and has a good performance 
in networks of different scales and connectivity. 
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