
Backup-Resource Based Failure Recovery Approach
in SDN Data Plane

Shujuan Zhang, Ying Wang, Qichao He, Jinke Yu, Shaoyong Guo
State Key Laboratory of Networking and Switching Technology

Beijing University of Posts and Telecommunications
Beijing, China

Email: {zhangsj, wangy}@bupt.edu.cn

Abstract—Software Defined Networking (SDN) enables the
underlying infrastructure to be abstracted from the network
services and controlled by one or more controllers. If a link or a
node fails, the switches that can detect the failure have to either
inform controller to update flow tables or transform the data to
pre-configured paths to recover the failure. However, existing
failure recovery approaches mainly consider the recovery delay
and packet loss, and ignore the storage resources consumption for
backup paths in case of link or node failure. Moreover, the
Ternary Content Addressable Memory (TCAM) that stores flow
entries is expensive and limited with high-energy consumption.
Thus in order to minimize the consumption of backup resources
and meet the required failure recovery delay, a backup-resource
based failure recovery approach is proposed. Two metrics are
proposed to grade physical links, and three kinds of strategies for
different graded links are provided, based on which the approach
tries to use less flow entries to recover link failure and meets the
required failure recovery delay, while guaranteeing the reliability
of the network. Simulations show that backup-resource based
approach can use as less flow entries as possible to ensure the
performance of failure recovery and satisfy the required delay of
important traffic at the same time. Moreover, the approach has
good and steady performance in networks of different scales and
connectivity.

Keywords—SDN; flow entry; failure recovery; data plane

I. INTRODUCTION

The research about Software Defined Networking (SDN)
has got more and more attention from academia and industry
recent years. One of the characteristics of the SDN is that it
separates data and control functions of networking devices with
a well-defined Application Programming Interface (API), which
claims that the control of the network is realized by the
centralized controller platform. In the architecture of the SDN,
the existence of the control plane can make the network
deployment and configuration more intelligent and simplified.
With all complex functions subsumed by the controller, switches
is mainly responsible for managing flow tables whose entries
can only be populated by the controller [1].

Obviously, data plane is the key part for ensuring normal
operation of the SDN network, thus one of the problems in SDN
data plane is the failure recovery. Some approaches [2-3]
propose reactive strategies to solve it. However, none of them
take into account the latencies due to the communication of
switches with the remote controller, which may affect the

quality of service for the businesses with higher request of real-
time and cause the loss of data packets [4-5].

With that in mind, there are a number of studies focusing on
the fast failure recovery in SDN data plane. The approach of [6]
use the Failover Group Tables proposed by the Openflow
specification from the version of 1.3 to decrease the failure
recovery time. In contrast, some approaches [7-8] extend
Openflow protocol to eliminate the communication with remote
controller when a link fails. Although it can ensure fast link
failure recovery, the extension of Openflow protocol has an
obvious drawback of complexity of implementation. The others
[9-10] try to overcome the problem of latencies and complexity
by setting priority for traffic or backup path. However, those
proactive strategies against link failures have not been explicitly
studied. Due to the increase of businesses volume and/or the
scale of network, the calculation amount and the resources
consumption of switches for failure recovery will increase.
Furthermore, in Openflow-enabled network, flow entries are
used to route the flows through its pre-defined paths. However,
the flow entries are stored in Ternary Content Addressable
Memory (TCAM), which is an expensive and limited hardware
with high-energy consumption [11]. For example, N.Katta
reported that TCAMs are 400 times more expensive [12] and
100 times more power consuming per Mbit than RAM-based
storage [13]. Moreover, with the communication traffic
increasing, the number of flow entries in switches will also
augment. Eventually, the OpenFlow switch will run out of
storage space and begin deleting the entries in TCAMs. Network
latency and packet loss will deteriorate at the same time, and the
network quality of services (QoS) will also drop [14].

In this paper, we propose a failure recovery approach based
on backup resources to minimize the consumption of storage
resources of switches, while meeting the required recovery delay
when link fails. The contribution of this paper is threefold. First,
we propose two metrics to determine the importance level of a
link. Second, three kinds of strategies for different graded links
are provided, based on which we give the formulation of the
problem and design algorithms to solve the problem. Third, we
conduct simulations to show the validity of our approach and
assess the performance in networks of different scales and
connectivity.

The rest of this paper is organized as follows. Section II
discusses the related works. Section III analyzes and defines the
problem. Section IV introduces the proposed approach.

© Copyright IEICE – The 18th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2016

Simulation results are presented in Section V and this paper is
concluded in Section VI.

II. RELATED WORK

 At present, research about failure recovery strategy in SDN
data plane can be classified into two categories: reactive and
proactive, which can also be used into control traffic.

The study of [2] mainly considers reactive strategy, in which
the controller is entitled to monitor link status in the network,
and, in case of failure, it calculates a new path for the affected
demand and replaces or removes flow entries in switches,
accordingly. In [3] the authors presented reactive and proactive
mechanisms for control and data traffic in the case of link
failures of SDN. The results indicate that the failover time for
proactive and reactive are about 45ms and 70-130ms,
respectively. And this paper did not consider situations where
the controller or switches themselves crash.

However, reactive recovery hardly achieves carrier-grade
requirement in large scale networks [3], thus proactive recovery
is studied pervasively for fast failover in SDN data plane. In [15],
V. Padma and P. Yogesh propose link protection scheme by
adding fast recovery mechanisms in the switch and controller. It
avoids controller intervention in the case of single link network
failures, which reduces not only recovery time but also the
overhead of the controller. The simulation results showed that
the scheme performs reasonably better than the existing scheme
in terms of switchover time. However it increases the number of
flow entries for backup path relatively. The authors of [7]
proposed a proactive scheme with OpenFlow extension, called
OpenState, which can autonomously adapt forwarding rules in a
stateful fashion. The scheme discussed the computation of
backup paths, including link congestion level, distance of the
reroute point from the failure detection point, and level of
sharing of backup paths by different flows. And the results were
compared in three aspects with three different network
topologies. The idea of extending OpenFlow protocol is also
used in [8], the authors proposed an end-to-end path protection
scheme by implementing a monitoring function in OpenFlow
switches, which can autonomously react to failures by switching
to a precomputed end-to-end backup path, thus the scheme not
only can reduce processing load on the controller, but also
achieve data plane fault recovery in a scalable way within 50ms.
By using the OpenFlow’s Fast Failover Group Table, the authors
of [6] introduce a failover scheme with preconfigured primary
and secondary paths. And the backup path is calculated from
every intermediate switch to destination in case of link failure.
If a switch has no feasible backup path, it will return packets to
the previous switch by crankback routing. After restoring link
functionality, the Group Table reverts to the primary path. In [9],
the authors proposed a control application of SDN for class-
based traffic recovery with load balancing, and recovery
mechanisms have been implemented for different traffic class,
ranging from reactive in case of Bronze traffic to 1+1 proactive
for Gold traffic. Similar to [9], the authors of [10] also use the
class strategy to grade the backup paths, in which segment
protection is used in an Ethernet OpenFlow network for the case
of link failure and interface failures. The working and backup
paths are maintained at different priorities, and OpenFlow is

extended to enable switches to locally react to connected failed
links automatically without participation of the controller.

However, all these researches mainly consider the delay and
packet loss during failure recovery in SDN. Different from these
related works, we focus on minimizing the consumption of
storage resources of switches for link failure recovering.

The proposed failure recovery approach in this paper can not
only save storage resources, but also meet the required recovery
delay. Moreover, it can behave well especially when the network
scale is large.

III. PROBLEM FORMULATION

Firstly, we give an instance of link failure recovery in SDN
network. As shown in Fig.1, the network has eight OpenFlow
switches and fourteen links, where the red line is the working
path between the host H1 and H2. There is no doubt that all
flows going through the link <S2,S5> will be influenced in case
of the failure on link <S2,S5>, and the switch S2 can detect the
failure. There are four alternative backup paths in the network
for the link failure recovery, which are distinguished by painting
four different colors. And all of the backup paths are realized by
configuring flow entries in related switches. The green one goes
through four switches: S1, S3, S6 and S8, thus they all have one
additional flow entry respectively. The purple one recovered by
the detectable-switch S2, and the switches of S2, S4, S7 all have
to store one flow entry respectively. Both the yellow and blue
path are the backup paths from the detectable-switch S2 to
switch S5 that is the next switch of S2 on working path, but the
blue path has one more switch than the yellow one, thus the blue
path will generate one more flow entry than the yellow path.

S2

S5S1

S3
S6

S8

S4

S7

H1 H2

 Openflow
 Switch

Host

Fig.1. An example of SDN network with link failure

On the other hand, all these flow entries need to be pre-stored
in related switches, and it may be a burden for the storage of
flow tables. Since the capacity of TCAMs is limited, and the
difficulty and complexity of searching specific flow entries will
arise with the increase of the scale of the network. Thus the
amount of switches belonging to backup path has a linear
relationship with the resource consumption for link failure
recovery, and our work focus on using as less flow entries as
possible to achieve link failure recovery and aiming to meet
required recovery delay.

Based on the above discussion, we formulate an SDN-
network as an undirected weighted graph G=(N,L), where N
represents the set of all the switches (e.g., OpenFlow switches),
and L represents the set of all the links among the switches. Let
F denotes the set of source-destination communication paths.

For a link l∈L, the total number of the flows going through the
link l is denoted by FN(l), the bandwidth utilization ratio is
BUR(l), and BPN(l) presents the number of backup paths going
through link l. In fact, not all links in a network need to pre-
configure the flow entries of backup paths, thus with the aim to
minimize the resource consumption for failure recovery and
satisfy the required delay at the same time, our first job is to find
which links are the most important, and which links have merely
influence in case of link failure. In general, we firstly need to
confirm the importance level of links according to FN and BUR,
then classify the set of L to three sets that have different priority,
finally compute backup paths for each set according to the
corresponding strategy we proposed.

IV. THE PROPOSED BACKUP-RESOURCE BASED

FAILURE RECOVERY APPROACH

In this section, we first explain how to grade the importance
level of link. And based on the graded links, we define three
different backup strategies for the three class links. Then we
propose algorithms to find backup paths for links with different
grades.

A. The Importance Level of Link

In the real networks, the occurrence of link failure is random,
and because of diverse links, the influence on the network or the
communication between hosts is also different in case of link
failure. In order to minimize the flow entries for pre-configuring
backup paths and achieve required recovery delay in case of link
failure, we propose metrics to classify the links in a network
firstly.

Fig.2 represents the communication path of ten hosts in a
SDN network, where five flows are differed by dotted lines with
five colors. There are fourteen physical links between switches,
which are represented by black solid line. And failure that
happened on different links may cause diverse grade
consequences for the network. For example, there are four flows
get through link <S2, S5>, two flows through link <S5, S8> and
<S1, S2>, one flow through link <S3, S5>, <S4, S5>, <S5, S6>,
<S5, S7>, and the rest of links have no flow across at present. If
link <S2, S5> fails, four flows will be influenced. Similarly, if
other links fail, the flows going through the link will also be
influenced. Furthermore, S5 is a kernel node, which the five
flows all run through it. Thus link <S2, S5> and node S5 both
are important for the present network.

Based on this, we rank the physical link so as to adopt
diverse recovery strategies to implement failover with less
resources. The evaluation criteria are formulated as follows: ܰܨ௎=1-e(-FN) (1)

IMPL=)2ڿ	ܰܨߙ௎ + (1 − (2) ۂ(ܴܷܤ(ߙ

We select two metrics to present the importance level of
links: FN and BUR, and the value of BUR has represented over
the link, which is shown in Fig.2. Because of the relationship
between FN and the importance level of link represented by
IMPL are not merely the linear, and the effect to the link ranking
will tend to be stable with the FN increasing, thus we use
function (1) to transform the original FN to ܰܨ௎ to make it
suitable for our research scenario. And function (2) represents
the importance level of link, in which the coefficient α∈ [0, 1] is

used to adjust the weight of two metrics. Since ܰܨ௎ ∈[0,1] and
BUR∈ [0,1], thus the scope of IMPL is [0,2], and we set [0,0.6]
as level 0, [0.7,1.3] as level 1, [1.4,2] as level 2 to normalize it.
Furthermore, the higher the number is, the greater the level will
be. Then the three kinds of grade are regarded as different
importance level of links. From the explanation above, we know
the value of FN and BUR of link <S2, S5> is 4 and 0.8
respectively, thus we can get the IMPL(2,5) of link <S2, S5>,
which is 2. Similarly, we can calculate the real value of the
importance level of link <S4, S5>, <S3, S5>, <S5, S8>, <S2, S3>
and <S1, S2>, and they are 0.94, 1.14, 1.46, 0.02 and 1.26
respectively. After the normalization, the value of IMPL of each
link is: 1, 1, 2, 0 and 1 respectively.

S2

S5S1

S3

S6

S8

S4

S7
BUR=30%

BUR=20% BUR=60%
H1

H2

H3

H9

H5

H4

H6

H10

H8

BUR=40%

H7

BUR=80%

BUR=50%

BUR=30%

Fig.2. An instance of SDN network operation

B. Backup Strategy

With the IMPL of each link, we make strategies to reduce
the storage of flow entries in switches and satisfy the required
delay. Before describing our backup-resource based approach,
we propose three different backup strategies for the three kind
of importance level of link:

1) Double-Path Strategy: The high-importance level of link
l in network g=(N,L), denoted as HIL(g), is described as follows: ܮܫܪ(݃) = ሼ݈	|	݈ ∈ ,ܮ (݈)ܮܲܯܫ = 2}																			(3)
Therefore, HIL(g) is the set of links that the value of IMPL of
link l is 2, which means the link l has the highest importance
level so that the flows going through it has the requirements of
lower latency and higher transmission quality. Thus we apply
double-path backup strategy to the link l, which provides two
backup paths that can recover link failure from the detectable-
switch to the next-switch (denoted as NHOP) and the next-next-
switch (denoted as NNHOP) belonging to the working path, and
the NHOP backup path is the prior one. The strategy can ensure
that if the link l fails and it is unable to recover normal
communication from the prior backup path, the flows through
the link l can be transferred to the NNHOP backup path.

2) Single-Path Strategy: The middle-importance level of
link l in network g=(N,L), denoted as MIL(g), is described as
follows: ܮܫܯ(݃) = ሼ݈	|	݈ ∈ ,ܮ (݈)ܮܲܯܫ = 1}																			(4)
Where the MIL(g) is the set of links that the value of IMPL of
link l is 1, which means the link l has the middle importance

level so that the flows going through it has lower demand than
the flows through high-importance level links. Thus we apply
single-path backup strategy to the link l, and we just pre-
configure the NHOP backup path to recover the link failure so
that the required failover delay can be satisfied. If this strategy
fails, we trigger the reactive recovery strategy.

3) Reactive Strategy: The low-importance level of link l in
network g=(N, L), denoted as LIL(g), is described as follows: ܮܫܮ(݃) = ሼ݈	|	݈ ∈ ,ܮ (݈)ܮܲܯܫ = 0}																			(5)
Thus the LIL(g) is the set of links that the value of IMPL of link
l is 0, which means the number of flows going through link l is
fewer or those flows have no serious demand for the latency or
packet loss, to which we apply reactive backup strategy. In this
strategy, backup path is dynamically allocated, but resources
required by recovery paths are not allocated until a failure occurs.
Thus, when the failure occurs, additional signaling is required to
establish the backup path.

C. Backup-Resource Based Approach

Given a network G= (N, L) and IMPL, we can construct sets
with different level, such as HIL, MIL and LIL, by the
Algorithm1, where each ݈ ∈ will be classified by the value of ܮ
IMPL.

Algorithm1 Classify links

Input: G= (N, L), IMPL
Output: HIL, MIL, LIL
Procedure:
1: for l in L
2: if IMPL(l)==2
3: HIL=l
4: else if IMPL(l)==1
5: MIL=l
6: else LIL=l
7: end if
8: end if
9: end for
We use Algorithm2 to compute the backup paths for links,

the backup paths are computed by the strategy proposed in IV.B
according to the IMPL. Specifically, if more than one
appropriate paths are available, we will select the one according
to hop, bandwidth and BPN in sequence. Moreover, the variable
K used in NeworkX [16] can also be configured according to the
actual situation.

Algorithm2 Compute backup paths for links

Input: G= (N, L), IMPL, K, HIL
Output: L.BestPath, L.SecondPath
Procedure:
1: for l in L
2: Select K paths with the minimum number of hop

for link l as NHOP backup path using NetworkX,
and stored in KPath

3: if KPath[0].hop==KPath[1].hop
4: Sort KPath by ascending order in bandwidth
5: else if KPath[0]. bandwidth==

KPath[1].bandwidth

6: Sort KPath by ascending order in BPN
7: L[l].BestPath= KPath[0]
8: end if
9: end if
10: if l in HIL
11: NLink=get the remaining links connecting with the

end node of l
12: for nl in NLink
13: L[l].SecondPath=select the best
14: NNHOP backup path from the source node of l

to the end node of nl with the same
compute priority as the NHOP

15: end for
16: end if
17: end for
After computing the backup paths for links by Algrithom1

and Algorithm2, controller sends the flow entries for failure
recovery to the related switches. In addition, with the network
operating, the importance level of links will vary, thus the
controller monitor the FN and BUR once every time T, in our
work we set T as 5ms, and if the real time value of IMPL is
different from older value, then update the backup paths.

V. PERFORMANCE EVALUATION

 In this section, we conduct simulations to verify our
approach. We let Nb present the total number of flow entries for
backup paths, and let Nw present the total number of flow entries
for working paths. The value of Nb varies with different
recovery approaches, thus we first compare our approach with
two existing approaches mainly in terms of the value of Pb =
Nb/(Nb+Nw). Then we evaluate the performance of our
approach with different scales and topologies.

A. Comparison with Existing Approaches

 In order to verify the validity of our approach, denoted as
IML, we compare it with two typical existing approaches: the
approach proposed by Capone, A et al. (denoted as DP) [7] and
the approach proposed by Adrichem, Niels L. M. Van et al.
(denoted as CR) [6], which are described in TABLE I. Moreover,
we first select the German Backbone Network Topology from
SNDlib [17], which has 14 switches and 21links. And we divide
the switches in two sets: edge switches and core switches. Edge
switches act as source and destination of flows while core
switches are only in charge of routing. We assume that the
failure probability of each link is same, and the biggest
bandwidth of each link is 1024M.

Fig.3. The value of Pb with different number of edge switches

0

20

40

60

80

100

20% 40% 60% 80%

P
b*

10
0(

%
)

Edge swithes percentage of all switches

IML DP CR

TABLE I. THEREE FAILURE RECOVERY APPROACHES

Approach Failure Recovery Strategy

IML Physical links is graded to three kinds of levels, and each link uses different backup strategy that we proposed.

DP The “crankback” routing strategy are used when link failure [7].

CR The backup path is calculated from every intermediate switch to destination in case of link-failure, and primary and secondary paths are
preconfigured [6].

In order to assess the performance of resource consumption
for configuring the backup paths, we first set the percentage of
edge switches as 20%, 40%, 60% and 80%, and we collect the
data of Nb and Nw, then we can get the value of Pb with
different percentage of edge switches. As we can see from the
Fig.3, the value of Pb in DP and CR is between 60% and 75%,
which is greater than IML. Moreover, with the number of edge
switches increasing, the value of Pb is basically flat both in DP
and CR. However, our approach IML gradually levels off after
the value of Pb decreasing, because IML only consider the
physical link, and the backup paths are independent of flows.
Therefore, even though the number of backup flow entries
varies with the number of flows augment, the value of Pb
reduces in comparison with DP and CR.

Fig.4. The value of Nl/Nb with different link sets

In order to test the number of flow entries in each set
accounted for the proportion of the flow entries for backup paths,
we select 40% of all switches in the topology as edge switches,
and set the coefficient α as 0.4, then we observe how many flow
entries each approach will pre-configure for failure recovery.
We gather the stored flow entries for backup in the set of HIL,
MIL and LIL respectively, and we let Nl represent the total
number of flow entries in one of the sets. The result is shown in
Fig.4, we can find that the value of Nl/Nb in CR and DP is of
about the same at each kind of set, since they do not class the
links, which cannot take different recovery strategies to links
belonging to different sets. And whether the backup paths for
link is pre-configured or not is largely up to flows going through
the link, thus the value of Nl/Nb in the set of LIL in CR and DP
is lower than other sets. Moreover, the controller does not need
to pre-configure backup paths for the links in the set of LIL, thus
in IML, the value of Nl/Nb in the set of LIL is zero.

Then we evaluate the three approaches in different networks,
we use BRITE [18] to randomly generate networks with the

number of switches from 10 to 190. In Fig.5, we set α as 0.4 and
the connecting probability between any two switches as 50%,
and compare IML with other approaches. We can find that when
the number of switches increases, the value of Pb almost stays
at around 60% and has no large floating in DP and CR. However,
it gradually reduces in IML, and the overall value lower than
other approaches. The reason is that with the scale of network
increasing, the flows will increase to satisfy greater business
volume, then the number of flows going through the same link
will augment, which is a good news for IML, because IML just
compute backup path once for a physical link, thus it will save
more storage resources of flow table in this case.

Fig.5. The value of Pb in three approaches with different number of switches

B. Performance in Different Networks

We also evaluate our approach in networks with different
scales. In Fig.6 and Fig.7, we set the edge switches as 40%.

Firstly, we set the value of α as 0.2, 0.4, 0.6 and 0.8 to
observe the number of flow entries for pre-configuring backup
paths in our approach. We can find in Fig.6 that with the number
of switches increasing, all values of Pb decrease in different α.
Because with the number of switches and business volume
increasing, the number of flows going through the same physical
link will augment, and the backup paths for the physical link
failure recovery only compute once, thus the flow entries for the
link recovery will reduce a lot. Moreover, when the number of
switches is more than 70, the value of Pb keeps lowest in α=0.4
than others.

0
10
20
30
40
50
60
70
80
90

LIL MIL HIL

N
l/

N
b*

10
0(

%
)

Link Sets

IML DP CR

10

20

30

40

50

60

70

80

90

10 30 50 70 90 110 130 150 170 190

P
b*

10
0(

%
)

Number of switches

IML DP CR

Fig.6. The value of Pb with different value of α

In order to observe the influence on the value of Pb with
different connecting probability between any two switches, we
set the connecting probability between any two switches as 40%,
60% and 80%. The result is shown in Fig.7, we can find that as
the connecting probability gets smaller, more flow entries are
needed to pre-configure the backup paths. Because when the
connecting probability gets smaller, the average hops between
any two switches may get bigger, more flow entries are needed
to recover the link failure. In addition, no matter how big the
connecting probability is, the value of Pb reduces with the scale
of network increasing, which means our approach has good
performance for resources consumption in networks of different
scales and connectivity.

Fig.7. The value of Pb with different connecting probility

VI. CONCLUSION

In this paper, we have investigated the single link failure
recovery problem in SDN. The deficiencies of existing
approaches are summarized. In order to minimize the flow
entries for backup paths and meet the required failure recovery
delay, we propose a backup resource-based failure recovery
approach. We first propose two metrics to determine the
importance level of a link. Then we propose three kinds of
strategies for different graded links, based on which we give the
formulation of the problem. We also design algorithms to find
adaptive backup paths for links with less flow entries.
Simulations show that our approach can reduce flow entries for
link failure recovery, and meet the required delay of the

important traffic at the same time, and has a good performance
in networks of different scales and connectivity.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (61501044).

REFERENCES
[1] https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf.

[2] Sharma, S.; Staessens, D.; Colle, D.; Pickavet, M.; Demeester, P.,
"Enabling fast failure recovery in OpenFlow networks," in Design of
Reliable Communication Networks (DRCN), 2011 8th International
Workshop on the , vol., no., pp.164-171, 10-12 Oct. 2011.

[3] Sharma, S.; Staessens, D.; Colle, D.; Pickavet, M.; Demeester, P., "Fast
failure recovery for in-band OpenFlow networks," in Design of Reliable
Communication Networks (DRCN), 2013 9th International Conference
on the , vol., no., pp.52-59, 4-7 March 2013.

[4] Staessens, D., et al. "Software defined networking: Meeting carrier grade
requirements." IEEE Workshop on Local & Metropolitan Area
NetworksIEEE, 2011:1-6.

[5] Sharma, Sachin, et al. "OpenFlow: Meeting carrier-grade recovery
requirements." Computer Communications 36.6(2013):656-665.

[6] Adrichem, Niels L. M. Van, B. J. V. Asten, and F. A. Kuipers. "Fast
Recovery in Software-Defined Networks." 2014 Third European
Workshop on Software Defined Networks (EWSDN) IEEE Computer
Society, 2014:61-66.

[7] Capone, A., et al. "Detour planning for fast and reliable failure recovery
in SDN with OpenState." Design of Reliable Communication Networks
(DRCN), 2015 11th International Conference on the IEEE, 2015:25-32.

[8] Kempf, J.; Bellagamba, E.; Kern, A.; Jocha, D.; Takacs, A.; Skoldstrom,
P., "Scalable fault management for OpenFlow," in Communications
(ICC), 2012 IEEE International Conference on , vol., no., pp.6606-6610,
10-15 June 2012.

[9] Adami, D.; Giordano, S.; Pagano, M.; Santinelli, N., "Class-based traffic
recovery with load balancing in software-defined networks," in Globecom
Workshops (GC Wkshps), 2014 , vol., no., pp.161-165, 8-12 Dec. 2014.

[10] Sgambelluri, A.; Giorgetti, A.; Cugini, F.; Paolucci, F.; Castoldi, P.,
"OpenFlow-based segment protection in Ethernet networks," in Optical
Communications and Networking, IEEE/OSA Journal of , vol.5, no.9,
pp.1066-1075, Sept. 2013.

[11] Stephens B, Cox A, Felter W, Dixon C, Carter J. "PAST: scalable ethernet
for data centers." ACM SIGCOMM CC 2012: 49-60. DOI:
10.1145/2413176.2413183.

[12] Kanizo, Y., D. Hay, and I. Keslassy. "Palette: Distributing Tables in
Software-Defined Networks." Proceedings - IEEE INFOCOM
12.11(2013):545-549.

[13] Zhang, Xin, et al. "DPPC-RE: TCAM-Based distributed parallel packet
classification with range encoding." IEEE Transactions on Computers
55.8(2006):947-961.

[14] Ma, Huan, Y. Yang, and Z. Mi. "A distributed storage framework of
FlowTable in software defined network." Computers & Electrical
Engineering 43(2015):155-168.

[15] V. Padma and P. Yogesh, "Proactive failure recovery in OpenFlow based
Software Defined Networks," Signal Processing, Communication and
Networking (ICSCN), 2015 3rd International Conference on, Chennai,
2015, pp. 1-6.

[16] http://networkx.github.io/.

[17] http://sndlib.zib.de.

[18] http://www.cs.bu.edu/brite/.

10

20

30

40

50

60

70

10 30 50 70 90 110 130 150 170 190

P
b*

10
0(

%
)

Number of switches

0.2 0.4 0.6 0.8

0

10

20

30

40

50

60

70

10 30 50 70 90 110 130 150 170 190

P
b*

10
0(

%
)

Number of switches

40% 60% 80%

