
Enabling Inference Inside Software Switches
Yung-Sheng Lu and Kate Ching-Ju Lin

Department of Computer Science, National Chiao Tung University, Taiwan
{yungshenglu, katelin}@cs.nctu.edu.tw

Abstract—Software Defined Networking (SDN) has been
emerged to solve the problem of traditional network archi-
tectures. The ability of programmable switches renders us an
opportunity to have computational tasks done in the switches.
With this nice property, in this work, we investigate the potential
of enabling machine learning inside a network. To this end, we
propose a new architecture, Intra-Network Inference (INI), which
equips each switch with a recently released component, called
neural compute stick (NCS), to enable intra-switch neural network
inference. Unlike conventional SDN architectures, which relay
backend servers to enable inference, our INI performs inference
locally at switches and, thereby, reduces the data forwarding
overhead and inference latency.

Index Terms—SDN, P4, Neural Networks

I. INTRODUCTION

Software Defined Networking (SDN) has been emerged
to solve the problem of traditional network architectures. In
SDN, a network is divided into the control plane and the
data plane. All network management is handled by the control
plane by software, while switches are only in charge of simple
data forwarding. Recent research has also explored how to
virtualize traditional network services by Network Function
Virtualization (NFV). NFV eliminates the need of providing
network functions by specialized dedicated hardware (such as
firewalls, routers, etc.). Instead, NFV is implemented using
flexible software, which can be flexibly deployed (removed)
into (out of) the network as needed. It also becomes possible
to develop a variety of value-added services. By integrating
NFV and SDN, more diverse services can be designed and
boosted.

On the other hand, with the evolution of artificial intel-
ligence. The system can leverage data processing or model
prediction to quickly process a large amount of data and make
accurate decisions. In recent years, artificial intelligence has
been widely used in different fields, such as smart factories, In-
ternet of Things, computer vision, unmanned stores and other
services. Many studies [1]–[3] have also used artificial intel-
ligence technologies to solve network management problems.
If these artificial intelligence services can be implemented as
a virtual network function (VNF) through software, we can
make an SDN intelligent and be managed more efficiently.

However, the combination of NFV and SDN still needs
to transfer data streams from switches to different virtual
machines for inference, as illustrated in Fig. 1. The data
exchange between switches and virtual machines would incur a
fairly long delay and a large amount of data forwarding load,
which would easily saturate the bottleneck link and lead to
congestion. To resolve this problem, in this work, we propose

 

Fig. 1: Legacy Architecture for Inference

 

Fig. 2: Intra-Network Inference

to enable inference capability inside switches, as illustrated
in Fig. 2. As the advanced software switches, e.g., P4, are
designed to have certain computational capability, it becomes
now possible to perform simple inference directly in switches,
without the assistance of backend servers or virtual machines.

To achieve this goal, this paper presents a new archi-
tecture, called Intra-Network Inference (INI). We develop a
data forwarding processing system that allows packets to be
cloned to the kernel of a switch for on-line inference. To
enable in-switch inference, we leverage a new hardware, called
neural compute stick (NCS), developed by Intel Movidius
and released on the market recently. By connecting an NCS
to a P4 switch over a USB interface, the NCS can process
the cloned packets and perform real-time inference. An INI-
enabled switch is capable of filtering the packets that are useful
for inference and hence reduces the cost of data cloning.
To verify the practicality of our design, we implement a
prototype of INI using P4 switches and empirically measure
the execution time required by each phase of INI.

The rest of this paper is organized as follows. Section II
summarizes recent works on network management via ma-
chine learning. We then describe the design of our INI in
Section III and show some preliminary results in Section IV.

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019



Fig. 3: INI Architecture

Finally, Section V concludes this work and summarizes some
directions of future study.

II. RELATED WORK

Recent work has shown possibility of leveraging machine
learning to improve the efficiency of network management.
The studies [4]–[7] propose to detect and monitor elephant
flows of a network via traffic classification or rule-based
algorithms. The work [4] combines switch-side filtering and
controller-assisted classification to enable real-time classifica-
tion. A cost-sensitive learning method [5] is then proposed
to further improve the inference speed. FLight [6] alterna-
tively develops a rule-based detector based on the the TCP
communication behaviors. Later work [7] not only detects
elephant flows but also counts the size of those flows for
traffic engineering. The above approaches are designed mainly
based on conventional machine learning classification, whose
performance is sensitive to feature selection.

Some work [8], [9] investigates the network traffic classi-
fication problem. The problem of identifying end-user appli-
cations, like Facebook, Twitter and Skype is explored in [8].
[9] gives a throughout survey about the challenges of network
application identification, including port abuse, random port
usage and tunneling.

Recent efforts then exploit deep learning techniques to
enable more network services. The work [1] enables traffic
optimization, like flow scheduling, using reinforcement learn-
ing. It develops a system that consists of two components:
peripheral systems (PS), which runs on all end-hosts to collect
flow information and make local decision, and central system
(CA), where global traffic information is aggregated and pro-
cessed. The interaction between the two components mimics
the design of reinforcement learning so as to optimize network
performance. DDNN [10] enables distributed deep learning
by allowing edges and end users to cooperatively finish the
inference tasks. To reduce the number of rules in TCAM, [2]
proposes a reinforcement learning scheme to determine which
rules are crucial and should be kept in TCAM. A malware
classification system based on CNN is developed in [3]. In
this work, we select [3] as an application to demonstrate the
effectiveness of our in-network inference capability.

�✁✂✄☎✆✝ ✞✆✟✠✡☛

☞✌✍✎✌✏

✑✒✟✓✁

✔✁✕✁✆✟✂✖☎✕

�✍✗

✑✕✠✁✆✁✕☛✁

✑✕✠✁✆✁✕☛✁

✘✁✙✚✛✂

✞✆✟✖✕✖✕✓ ✜☎✢✁✛
�✍✗

✍☎✒✣✖✛✟✂✖☎✕

✑✕✠✁✆✁✕☛✁

✜☎✢✁✛

✜☎✢✁✛

✍☎✕✡✓✚✆✟✂✖☎✕

�✁✂✄☎✆✝ ✞✆✟✠✡☛

☞✌✍✎✌✏
✞✆✟✖✕✖✕✓ ✞✆✟✖✕✖✕✓ ✜☎✢✁✛✌✆✁✣✆☎☛✁✙✙✖✕✓

✌✤✟✙✁ ✥✦ ✧✠★✖✕✁ ✜☎✢✁✛ ✞✆✟✖✕✖✕✓

✌✤✟✙✁ ✩✦ ✧✕✛✖✕✁ ✑✕✠✁✆✁✕☛✁

Fig. 4: Inference Process

III. INI DESIGN

A. Architecture
Figure 3 illustrates the hardware architecture of the pro-

posed INI. We use the Edgecore Wedge 100-32X switch with
programmable Tofino switch silicon from Barefoot Networks
as P4 switches. Each P4 switch is loaded with Open Network
Install Environment (ONIE) software installer, which is com-
patible with Open Network Linux (ONL). Besides, each P4
switch also supports USB Type-A port, which can connect
an NCS device. The P4Runtime Server and local controller
are two main components running on a P4 switch, which
communicate with each other via gRPC. gRPC is a modern
open source high performance RPC framework that can run in
any environment. ONOS (Open Network Operating System)
is one of the controller that supports P4Runtime, which is
designed for high availability, performance and scale-out. We
use ONOS as the main controller that manages the whole
network and let the ONOS and P4 switch communicate via
gRPC.

Figure 4 illustrates the framework of INI. Our framework
consists of two phases. The first phase is offline model
training, which creates the inference model for the next phase.
We use a CNN architecture LeNet-5 for offline training since
the NCS now can only support the CNN model. Before
training, we need to process the traffic and partition packets
into sessions, each of which is defined as a bidirectional flow,
including both directions of traffic. Since the size of input data
for a CNN model should be fixed, we extract only the first n
bytes (e.g., n = 784) from each session for model training and
inference. In general, the first few bytes of a session usually
includes the important connection information (e.g., MAC
layer and network layer headers) and a few of payload, which
should well characterize a session. When trimming all sessions
into a uniform length, 0×00 is appended to complement it to
n bytes if the size of a session is shorter than n bytes. After
trimming, each session will be converted to the input format of
the inference model for training and testing. Once the model
has been trained, to make the NCS be able to install the
training model for inference, we should configure the training
model for compiling an inference model.

After generating an inference model for an NCS, we can
run the inference model within an NCS for online inference.
When a P4 switch receives the network traffic of a full session,
we should do preprocessing to generate an input data for NCS

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019



Fig. 5: P4 filtering rule

to perform inference. After getting the result of inference, the
manager can consider to send the whole result or just only
a notification of anomaly to the local controller. Based on
the inference results, the controller can adapt its strategy by
modifying the forwarding rules of switches or banning some
misbehavior flows.

B. Flow Filtering

To capture only the first n bytes for inference, we leverage
the configurable P4 switches to direct only the first n bytes
to P4Runtime for further process. By doing this, we can
significantly reduce the load of forwarding data among P4
switch and P4Runtime. Figure 5 plots the process of the
proposed P4 filtering rule. In the beginning, Tofino will trigger
a packet-in event and send the packet to the local controller
during the ingress stage. Besides, the local controller will also
buffer the packets. The local controller will add an entry into
the NCS table and the other table for connection tracking. The
byte-counter keeps tracking the number of bytes according to
the table in connection tracking. The reason why the byte-
counter is tracking the number of bytes according to the table
in connection tracking is to ensure that the number of bytes can
accumulate from the first packet of a session without missing
the first packet when table-miss occurs in the NCS table. After
collecting the first n bytes of a session, Tofino will notify the
local controller that the queue is ready for inference.

C. In-Switch Inference

Upon receiving the notification, our system transforms the
data in queue into the input data format of a model and
sends to the NCS. The NCS then outputs the inference
result and returns the result back to the local controller. The
local controller will add an entry into the NCS table and
the table for connection tracking according to the inference
result from the NCS. By doing this, we can promptly detect
misbehavior or network properties via switches and configure
rules immediately to react to network changes.

IV. EVALUATION

We implement a prototype of INI to evaluate its perfor-
mance. In our implementation, an Intel Movidius Neural Com-
pute Stick 1 (Intel NCS-1) is connected to a P4 Wedge100BF-
32X switch via a USB port. We compare our INI with a legacy
architecture, where the P4 switch is connected to a server with
two GeForce GTX 1080 Ti GPU for remote inference. To

Metrics (ms) Legacy INI
Transmission per packet 39.53 0.378

Image transformation 0.35 0.38
Inference 3.78 8.56

Total 43.66 9.318

TABLE I: Inference Execution Time

verify the effectiveness of our design, we use malware classi-
fication as an application. We use a real data set, DeepTrack
(USTC-TFC2016) [11], which includes 791,615 packets, to
train a CNN-based classification model. We define packets
with the same five-tuple as a flow, and the data set includes
288,614 flows. The CNN model contains two convolutional
layers, two maxpool layers and two fully connected layers.
The model is trained with 20,000 epochs. Each session is
transformed to a gray-scale 28 × 28 image as the input of
the inference model. Hence, we let each switch forward the
first 784 bytes of a flow to the P4Runtime for inference in
NCS.

Execution Time of In-Switch Inference: We partition our INI
framework into three steps: packet forwarding (transmission),
transformation from packets to images, and inference. We
measure the time required by each phase in Table I for
the legacy GPU architecture and our INI, respectively. To
measure the transmission time between the P4 switch and
P4Runtime (or GPU server), we transmit the real traffic
received by Tofino to P4Runtime via Tofino ingress or the
remote GPU server through a 100 Mbps link, and calculate
the average transmission time of each packet. Note that the
legacy architecture requires each switch to forward the packets
to a backend server. To emulate this scenario, we generate
additional 9 connections that also send a file to the GPU server
at the same time. As multiple switches share a bottleneck link
connecting to the GPU server, the transmission time would be
fairly high. However, INI only needs to redirect the packets
from the P4 switch to P4Runtime. Hence, the data forwarding
path is extremely short, as a result reducing the transmission
time significantly.

As for image conversion, since both the legacy and INI
architecture leverages computing power, the process time is
similar. Finally, to measure the inference time, we perform
inference for all the flows and find the aggregated time
required to finish all the inference tasks. The table then shows
the inference time per flow on average. As the NCS is a less
capable device, its inference speed is slightly worse than GPU.
Also, our result overestimates the performance of GPU since
we simply calculate the average time required by a single
inference request without considering the queueing delay.
However, a GPU server has to serve many switches and may
buffer lots of requests in its queue. In other words, the actual
inference time, including the queueing delay, could be longer
in the legacy architecture. After summing up all the processing
time, we can see that INI reduces the overall execution time
significantly, as compared to the legacy architecture, showing
the effectiveness of our intra-network inference design.

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019



Fig. 6: Malware Classification Accuracy

3 5 7 9 11 13 15 17 19 21 23 25 27 29

Time (ms)

10
0

10
1

10
2

10
3

R
e

q
u

e
s
ts

Number of Reqests

Fig. 7: Inference Request Interval

Inference accuracy: The trained model is a multi-class clas-
sification model, which can classify a flow into one of the
potential applications (normal or malware). We reserve 80%
of the flows to train the CNN model and use the remaining
20% of the flows to test the model accuracy. The prediction
results is shown as a confusion matrix summarized in Figure 6.
The figure shows that most of the classes can be accurately
classified with a prediction ratio higher than 94%. Though
the processing speed of the NCS is slightly worse than
the GPU server, it can still achieve an accurate prediction
performance, showing its potential of realizing intra-network
machine learning.

Inference request arrival rate: We finally examine whether
the inference capability of NCS is sufficiently high for real-
time traffic. To check what is the arrival rate of inference
sessions, we extract the timestamp of each packet and find the
timestamp of the packet that includes the 784-th byte of the
flow. When this packet arrives, it means that a new inference
request will be sent to P4Runtime. That is, the timestamp of
the packet including the 784-th byte is exactly the timestamp
of an inference request. We then count the number of inference
requests arrived every millisecond.

Figure 7 plots the number of inference requests every
millisecond over time. The figure shows that, in most of time,
there exist more than 10 requests every millisecond. However,
each inference should be processed using 8.56 ms, on average,
as shown in Table I. This result verifies that the arrival rate of
inference requests is way more higher than the service rate of
an NCS (actually the service rate of a GPU as well). That is,
it is not possible to just rely on a single NCS to handle all the
inference requests in a network. It is hence worth study about
how to leverage multiple NCS-equipped switches to share the
inference load of a network in the future.

V. CONCLUSION

In this work, we presented an intra-network inference ar-
chitecture, called Intra-Network Inference. We combine pro-
grammable switches with a recently-released component, i.e.,
neural compute stick (NCS), to enable switches to performance
local inference. We develop filtering rules in the switch and
communication channels among the switch and P4Runtime to
realize in-network inference. By doing this, our architecture
avoids the heavy load of data forwarding among data and
control planes and further enable real-time network manage-
ment inside the network. We implement a prototype of INI to
measure the execution time required by each processing step
and point out some potential future research directions.

REFERENCES

[1] L. Chen, J. Lingys, K. Chen, and F. Liu, “AuTO: Scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization,”
in ACM SIGCOMM, 2018.

[2] T.-Y. Mu, A. Al-Fuqaha, K. Shuaib, F. M. Sallabi, and J. Qadir, “SDN
flow entry management using reinforcement learning,” ACM Trans.
Auton. Adapt. Syst., vol. 13, no. 2, Nov. 2018.

[3] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng,
“Malware traffic classification using convolutional neural network for
representation learning,” in International Conference on Information
Networking (ICOIN), Jan 2017.

[4] Y. Huang, W. Shih, and J. Huang, “A classification-based elephant
flow detection method using application round on SDN environments,”
in 19th Asia-Pacific Network Operations and Management Symposium
(APNOMS), Sep. 2017.

[5] Peng Xiao, Wenyu Qu, Heng Qi, Yujie Xu, and Zhiyang Li, “An efficient
elephant flow detection with cost-sensitive in SDN,” in 1st International
Conference on Industrial Networks and Intelligent Systems (INISCom),
March 2015.

[6] A. AlGhadhban and B. Shihada, “FLight: A fast and lightweight
elephant-flow detection mechanism,” in IEEE International Conference
on Distributed Computing Systems (ICDCS), July 2018.

[7] S. C. Madanapalli, M. Lyu, H. Kumar, H. H. Gharakheili, and V. Sivara-
man, “Real-time detection, isolation and monitoring of elephant flows
using commodity SDN system,” in IEEE/IFIP Network Operations and
Management Symposium, April 2018.

[8] B. Yamansavascilar, M. A. Guvensan, A. G. Yavuz, and M. E. Karsligil,
“Application identification via network traffic classification,” in Inter-
national Conference on Computing, Networking and Communications
(ICNC), Jan 2017.

[9] A. Tongaonkar, R. Keralapura, and A. Nucci, “Challenges in network ap-
plication identification,” in USENIX Workshop on Large-Scale Exploits
and Emergent Threats, 2012.

[10] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in IEEE
International Conference on Distributed Computing Systems (ICDCS),
June 2017.

[11] “Deeptraffic dataset.” [Online]. Available:
https://github.com/echowei/DeepTraffic/tree/master/1.malware traffic classification

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019


