
Flexible Network Resource-Allocation Architecture
Using Specification Injection

Masataka SATO, Shingo HORIUCHI

Access Network Service Systems Laboratories
NTT

Tokyo, Japan
E-mail address: {masataka.sato.bm, shingo.horiuchi.kg}@hco.ntt.co.jp

Abstract— To manage hybrid networks, telecommunications

carriers should transform their network management

architecture. We previously proposed a management

architecture that has common management functions and data

that are not specialized for a specific network. Using this

architecture, carriers will be able to easily manage new

networks to accelerate deployment. In this paper, we propose a

resource-allocation architecture, which is an extension of our

previous architecture. This architecture can manage the

network-capacity amount and flexibly allocate it according to

user demand. With this architecture, operation can be flexibly

changed based on external specifications. This allows carriers to

quickly release a new network service.

Keywords—Network Management, Multi-Layer Network, TM

Forum, SID

I. INTRODUCTION

A. Background

The business of telecommunications carriers has been
changing worldwide. Virtualization technology has made
much progress and enables network functions to be
implemented using software and low-cost, general-purpose
servers. However, there are still conventional networks
consisting of dedicated network equipment. Therefore, carries
need to manage both virtualized and non-virtualized networks
[1]. It is also necessary to combine network functions and
provide new services for a rapidly changing business
environment.

To manage such a hybrid network and provide new
services quickly, an operation architecture is necessary.
Telecommunications carriers usually use operation support
systems (OSSs) to accept service requests, allocate network
resources satisfying the requests, and control network
equipment. However, some legacy OSSs are individually
optimized for specific network services and have management
functions and data depending on the specific service.
Therefore, the legacy OSS architecture cannot keep up with
rapid service changes, and the management functions and data
models of OSSs are modified according to new services and
network equipment. This development and construction
approach, called “silo”, incurs considerable development
costs and time.

We propose a resource-allocation architecture that has
common management functions and data not specialized for a
specific service. The OSS based on the proposed architecture
does not need to modify the functions and data to change a
service and use new network equipment. Since the
characteristics of each network are described in the external
operation specifications and the function executes based on
these specifications, carriers can easily change the function
depending on the network by changing the external
specifications and injecting them into the architecture. As a

result, carriers can quickly release a new network service and
respond to various requirements of service providers.
Previously, we proposed a management architecture [2] for
describing network information by using a unified model and
mapping method [3] for converting service orders into
resource orders.

Our resource-allocation architecture is an extension of the
above architecture and can manage the network-capacity
amount and flexibly allocate it according to user demand.

B. Approach

Our previous architecture defines the characteristics of
each network externally and has common functions
independent of a specific network. We apply this architecture
to resource-allocation logic to solve the above problem.

The resource allocation process is as follows. Based on a
service request from a user, a carrier creates a logical path on
constructed physical networks and provides a communication
service to the user. In this process, the carrier cannot generate
unlimited paths because there is an upper limit of the capacity
of the network equipment. Therefore, it is necessary to
generate a path after judging whether it can fit in the capacity.

For example, consider the case of setting a 10-Mbps
bandwidth logical path from switch (SW) A to SW F in Fig.
1. The link between SW A and C cannot meet the 10-Mbps
requirement because it has only a 3-Mbps capacity.

Fig. 1 Example of Ethernet virtual private network

For such judgment, legacy network management OSSs
hold the capacity information to be managed for each network
protocol and add or count each time a logical path is generated.
This determines whether the capacity requirements are met.

However, because the capacity information management
and determination function legacy network management
OSSs specializes in a specific network protocol, it is necessary
to modify the function every time the managed network
changes, as mentioned in Section 1.

Therefore, the proposed architecture carries out this
function independent of a specific network as a common
function and can inject the characteristics of each network as
external specifications.

II. PROPOSED ARCHITECTURE

A. Overview of Proposed Architecture

Figure 2 illustrates our proposed architecture.

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

The proposed architecture has two databases (DBs). The
first is the Entity DB that holds physical and logical
information of the network. The types of entities include
physical resources that represent physical information of
networks and devices and logical resources that represent
logical connections and endpoints. The second is the Spec DB
that holds specifications externally defining the characteristics
of entity information held in the entity DB. Among the
characteristics defined by the specifications, what capacity the
entity consumes are described. The relationship between Spec
and Entity DBs is described later in the paper.

Fig. 2. Proposed architecture

A network service designer first defines managed network
characteristics as specifications in the Spec DB. The operator
then creates physical and logical resources in the Entity DB as
he/she installs network devices and configures them. When
creating these resources, the capacity is also registered in the
resource to determine whether the capacity limit of the device
is exceeded.

Based on the relationship of the communication protocol
stack, each resource has an upper-lower relationship. For
example, we consider a relationship in which an electrical
signal flowing on a physical cable is encoded into an Ethernet
frame, and an IP packet flows in the Ethernet frame. In this
case, the logical resources of the Ethernet layer are defined
above the physical resources, and the logical resources of the
IP layer are defined above the Ethernet layer.

Within such upper and lower relationships, creating upper-
layer resources consumes the capacity of lower-layer
resources. Therefore, our architecture determines whether the
upper-layer resource-capacity request is satisfied by the
capacity of the created lower-layer resource when the upper-
layer resource-generation request is received. If the request is
satisfied, the architecture creates the upper-layer resource and
updates the lower-layer resource to record the capacity
consumed.

The flow of our architecture is as follows. Capacity
allocation consists of the two functions, i.e., Get Capacity and
Allocate Capacity, as shown in Fig. 2.

1) Get Capacity: The Get Capacity function obtains the

capacity-consumption specifications of the requested upper-

layer resource, and the lower-layer resource becomes a

candidate to be consumed by the upper-level capacity-

consumption specifications.

2) Judgement: The information is passed to the Allocate

Capacity function, which obtains the capacity-consumption

specifications and determines whether the lower-layer

resource capacity satisfies the upper-layer request acccording

to the specifications.

3) Create and Update Resources: If the capacity satisfies

the requirements, the Allocate Capacity function creates the

upper-layer resource and updates the lower-layer resource to

record the capacity consumed.

 Therefore, capacity-allocation specifications can be
defined externally, and it becomes possible for an allocation
function to be independent of a specific network. Next, we
will explain the relationship between definition of
specifications, entities, and capacity allocation specifications.

B. Definition of Specifications & Entities

To develop the proposed architecture, we used an
information framework standardized by the TM Forum [4].
The information framework is the Shared Information and
Data model (SID) [5], which defines management models
common to the telecommunications industry.

The SID defines many classes, their attributes, and
relationships among them. The classes include Resource
Entity, which means a managed object. A resource entity is
characterized by its resource specifications. As shown in Fig.
3, a resource-entity class and resource-specification class are
defined separately in the SID.

Fig. 3. Specifications and entity of SID models

Our proposed architecture has a Spec DB and Entity DB.
The specifications for each resource can be modeled using
three classes.

• ResourceSpecification (ResourceSpec)
• ResourceSpecCharacteristic (RSC)
• ResourceSpecCharacteristicValue (RSCV)

ResourceSpec defines the characteristics of a resource
entity, which holds a reference to indicate the underlying
ResourceSpec. The attributes of resource entities are
characterized by the RSC and RSCV. In each case, the RSC
means the attribute name, and RSCV means allowable values.
An attribute of a resource entity is defined as a
ResourceCharacteristicValue (RCV) and holds a reference to
the base RSC.

An example of a resource specification and resource
entities is shown in Fig. 4. To provide an Ethernet virtual
private network (EVPN) service, a simple network with two
layer-2 (L2) SWs is deployed and a virtual local area network
(VLAN) is configured.

Resources include physical and logical resources.

A physical resource is a resource of a physical layer such
as a communication device, physical port, or cable. Physical
resources are modeled by classes that inherit a
PhysicalResource class [6] such as

• PhysicalDevice (PD)
• PhysicalPort (PP)
• PhysicalLink (PL) .

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

Fig. 4. Example of resource specifications and entity for EVPN service

A logical resource is a resource of a logical layer, such as
an endpoint of a network protocol, communication path, and
domain that can set paths. Logical resources are modeled by
classes that inherit a LogicalResource class [7] such as below.

• TerminationPointEncapsulation (TPE)
• ForwardingRelationshipEncapsulation (FRE)
• NetworkForwardingDomain (NFD)

A VLAN connection is modeled as an FRE, endpoints of
the VLAN are TPEs, and the area where the VLAN can be
created is modeled as an NFD.

In Fig. 4, “PhysicalPort_L2SW_Spec and RSC/RSCV”
means a characteristic of a L2SW’s port. Its RSC means an
attribute name (Location) and its RSCV means allowable
values (available location).

Similarly, in the case of logical resources,
“TPE_VLAN_Spec and RSC/RSCV” means a characteristic
of a VLAN endpoint. Its RSC means an attribute name
(VLAN, Bandwidth, _PhysicalPort) and its RSCV means
allowable values (1–4096, 1–1000 Mbps, ObjectId of physical
port).

The _PhysicalPort attribute is for storing ObjectID of
physical port for indicating a reference from the logical TPE
entity to the belonging PhysicalPort entity. In our architecture,
the upper-lower relationships between entities are expressed
by holding ObjectIDs to refer to related entities. This makes it
possible to express the multiple relationships of logical and
physical layers.

C. Capacity expression and specification definition

We can assume that lower-level entities provide
capabilities such as transfer with higher-level entities. For
example, lower physical cable entities have capabilities to
transfer upper-level Ethernet entities because the upper
Ethernet frame is transferred by the electric signal of the lower
physical cable. In our architecture, the lower entity is called
the capacity-providing entity.

The capacity-providing entity holds the amount of
capacity for the higher level entity. For example, transfer
bandwidth (e.g. 100 Mbps) and memory capacity (e.g. 8 GB).

Our architecture can hold such capacity-consuming/-
providing relationships. The capacity attribute was defined
with reference to SID Capacity [8]. As shown at the bottom of
Fig. 5, such capacity is expressed in the attributes of entities
in our architecture. This example expresses that SW1-
SW2_PL has a capacity of 100-Mbps bandwidth by using
Capacity name, unit, and amount.

Fig. 5 Capacity-consuming/-providing entities

On the other hand, the upper entity is provided by
consuming the capacity of the lower entity and is called a
capacity-consuming entity. At the top of Fig. 5, the SW1-
SW2_FRE_VLAN entity is a capacity-consuming entity and
requests to consume 20 Mbps of 100-Mbps bandwidth of the
lower PL.

Our proposed architecture includes the ResourceSpec,
which describes the specifications that determine which entity
consumes capacity. In the example in Fig. 5, the capacity-
consuming entity SW1-SW2_FRE_VLAN is generated based
on FRE_VLAN_Spec, and the specifications describe
capacity consumption.

Next, we describe how to define the capacity-consumption
specifications for identifying lower-level entities from upper-
layer capacity-consuming entities. We add the definition of
ConsumeCapacityInfo to the ResourceSpec
(FRE_VLAN_Spec in Fig. 6), which is the basis of the
capacity-consuming entity. ConsumeCapacityInfo has the
following elements.

• Attribute: It shows an attribute that consumes
capacity. In the example in Fig. 6, it refers to the
bandwidth attribute defined in the RSC.

• Provider: It shows how traces between entities for
identifying the lower-level capacity-providing entity
and an array element. Each array element has
ObjectType, ReferDirection, ReferKey,
ConstrainedKey, and ConstrainedValue to be traced.

Fig. 6 ConsumeCapacityInfo

D. Procedure of Allocate Capacity Function

The Allocate Capacity function in Fig. 2 reads the capacity
consumption specifications and determines whether allocation
is possible. This flow is described based on Fig. 6.

Figure 6 is a situation in which the Allocate Capacity
function attempts to create SW1-SW2_FRE_VLAN as a
capacity-consuming entity based on FRE_VLAN_Spec, and
the entity requires 20-Mbps bandwidth. This function searches
for a capacity-providing entity that meets the 20-Mbps
demand based on the capacity-consumption specifications.

At index 0 of the Provider array, ObjectType is TPE,
ReferDirection is Forward, and ReferKey is _endPoint. By
using this information, this function searches a TPE entity
referred from SW1-SW2_FRE_VLAN. The reference

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

relationship from the FRE to TPE is indicated by the ObjectId
of the TPE referenced in the _endPoint” attribute of the FRE.
For the next index, Index 1, this function similarly executes a
process of searching for a PP referenced from the searched
TPE. Index 2 is a process of searching for the PD from PP, but
ReferDirection is Reverse. In this case, the reference
relationship is indicated not by the PP to PD direction but by
the object ID of the PP referenced by the _physicalPort
attribute of the PD. In the last index, Index 4, when searching
for the PL from PP in the reverse direction, this function uses
ConstrainedKey/Value to select one that satisfies the
condition (here, ResourceSpec of the candidate PL must be
SW-SW_PL_Spec and SW1-SW2_PL is finally selected).

After finding the capacity-providing entity, it is
determined whether the capacity of the entity satisfies the
requirements of the capacity-consuming entity of the upper
layer. As described in Fig. 5, capacity-consuming entity SW1-
SW2_FRE_VLAN requests 20 Mbps and capacity-providing
entity SW1-SW2_PL has 100-Mbps bandwidth. As a result,
the request “20 Mbps” is satisfied by “100 Mbps”.

Thus, this function can identify the capacity-providing
entity and determine whether the request is satisfied. Because
the process of this function is controlled by the capacity-
consumption specifications, the functional process and
specifications are separated. This enables the easy
customization of the process in accordance with the operating
network by modifying the specifications.

When determining the generation of the entity by the
above function, it is necessary to record in the capacity-
providing entity that the capacity has been consumed by that
entity. We describe how to record this in Fig. 7. We add
attribute CapacityDemand in the entity definition.
CapacityDemand consists of the ObjectId of the entity
that has requested the capacity consumption and the
required amount (CapacityDemandAmount).

Fig. 7 Capacity-providing entity after allocating

Finally, we show the class diagram of the entity added
with capacity related definitions.

Fig. 8 Class diagram related to capacity definition

III. CONSIDERATION

In this section, we give two examples of making capacity
decisions and consider the behavior of allocating resources.

A. Application Example of EVPN

The first example is the EVPN SW network in Fig.1. The
remaining bandwidths of the network are expressed at the top
of Fig. 9 (e.g. the remaining bandwidth of SwitchA-
SwitchB_PL is 20 Mbps because 80 of 100 Mbps have
already been consumed by FRE_VLAN_100). There is
a service request for User A to this network, and a
network operator tries to create a logical network that
allocates 10-Mbps bandwidth. The capacity
consumption specification for this network is the same
as ConsumeCapacityInfo (from the VLAN layer to the
EVPN SW network of the physical-resource layer)
shown in Fig. 6. When the Allocate Capacity function
executes based on this specification, the function does
not select physical links having less than 10 Mbps (such
as SwitchA-SwitchC_PL) as a result of judging whether
it satisfies the request, and the function generates logical
resources that refer to physical links exceeding 10 Mbps.
The generated result is illustrated in Fig. 10, and the
record of CapacityDemand is shown at the bottom of Fig.
9.

Fig. 9 Capacity-providing entities about EVPN

Fig. 10 EVPN after creating logical resources

B. Application Example of EVPN and OTN

The second example is a network combining EVPN and
optical transport network (OTN). As shown at the bottom of
Fig. 11, EVPN SWs (A and E) are at both ends, and OTN SWs
(B, C, and D) are relaying between them. In this network, the
network operator needs to manage the number of OTN
wavelengths in addition to the Ethernet bandwidth capacity.
This figure also shows the remaining amount of bandwidth in

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

the link between an EVPN SW and OTN SW and the number
of remaining wavelengths in the link among the OTN SWs.

Similar to the first example, we assume that there is a 10-
Mbps user request. The connectivity of the Ethernet layer
transferred by the link from EVPN SW A to OTN SW B is
expressed by the logical resources of the Ethernet layer. For
these logical resources, the consumption specification is
defined by “Capacity consumption spec1” shown in Fig.
12(this specification is the same as that of Fig. 6). As a result,
the resource entities consume the bandwidth capacity held by
the physical link.

The link among OTN SWs B, C, and D plays the role of
relaying Ethernet transfer by OTN, and logical resources are
expressed by two layers of the Ethernet and OTN layers. We
determined whether the remaining number of wavelengths of
the OTN layer is one or more, and one wavelength is
consumed to generate logical resources. For these logical
resources, the consumption specification is defined by
“Capacity consumption spec2” shown in Fig. 12. This
specification indicates the order of searching the OTN layer
from the Ethernet layer and searching the physical layer from
the OTN layer (from Indices 0 to 5). According to this order,
the Allocate Capacity function searches physical links and
checks the remaining wavelength number of each selected link.
As a result, there is no remaining number in the link between
SWs B and D, and there are remaining numbers in the link
between SW B to SW C and SW C to SW D. Therefore, the
Allocate Capacity function consumes the capacity of the links
from SW B to C and SW C to D and generates logical
resources of the Ethernet and OTN layers.

Fig. 11 Combined network of EVPN and OTN

Fig. 12 Capacity-consumption specifications for EVPN/ OTN network

Thus, we can apply the proposed architecture to the
network combining EVPN and OTN.

IV. CONCLUSION

We proposed a resource-allocation function extended
from our previous architecture that has common management
functions and data that are not specialized for a specific
network device and protocol. This architecture can manage
the network capacity amount and flexibly allocate it according
to user demand. The allocation function of the proposed
architecture has an execution procedure, and the capacity-
consumption specifications are separated, enabling easy
customization of the process in accordance with each network
by modifying the specifications.

We also showed that the proposed architecture can be
applied to two different networks (EVPN and combined
EVPN/OTN networks).

REFERENCES

[1] TM Forum, “Open Digtal Architecture Whitepapers,” August 2018.

[2] S. Horiuchi, K. Akashi, M. Sato, and T. Kotani, “Network Resource
Management Architecture with Unified Information Models,”
APNOMS 2017, pp. 489–499, Sep. 2017.

[3] K. Akashi, M. Sato, S. Horiuchi, and T. Kotani, “OSS Architecture and
Order Mapping Function for Providing Various Services,” APNOMS
2017, pp. 500–513, Sep. 2017.

[4] TM Forum, https://www.tmforum.org.

[5] TM Forum GB921, “Core Frameworks Concepts and Principles:
Business Process, Information and Application Frameworks,” Version
16.0.1, April 2016.

[6] TM Forum GB922, “Information Framework (SID): Physical Resource
Business Entities,” Version 16.0.1, May 2016.

[7] TM Forum GB922, “Information Framework (SID): LogicalResource
and ConmpoundResource Bisiness Entities,” Version 16.0.2, May
2016.

[8] TM Forum GB922, “Information Framework (SID): Common
Business Entities - Capacity,” Version 15.0.1, Nov 2015.

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

