
Space Weather Data Management System and

Monitoring in Decentralized Storage Environment

Yoga Andrian

Department of Computer Engineering

Keimyung University

Daegu, South Korea

yoga.andrian@lapan.go.id

Soo Hoon Maeng

Department of Computer Engineering

Keimyung University

Daegu, South Korea

tngns2004@stu.kmu.ac.kr

Essaid Maryam

Department of Computer Engineering

Keimyung University

Daegu, South Korea

maryama.essaid@gmail.com

Hongtaek Ju

Department of Computer Engineering

Keimyung University

Daegu, South Korea

juht@kmu.ac.kr

Kim DaeYong

Department of Computer Engineering

Keimyung University

Daegu, South Korea

imdy@stu.kmu.ac.kr

Abstract— Indonesian National Institute of Aeronautics

and Space (LAPAN) concerns to develop a system that

provides actual information and prediction related to space

weather activities called Space Weather Information and

Forecast Services (SWIFtS). SWIFtS is supported by a data

storage system that serves data near real-time. Because the

data is collected on one single server and is served by a

centralized model, problems emerge when the researchers need

the server for data processing and making forecasts to update

the content on the SWIFtS website. The system is incapable of

providing the latest data when the server is down. Therefore,

we propose a new system that utilizes the decentralized model

for storing data using the Inter Planetary File System (IPFS).

Our proposed method focuses on the background process, and

its scheme will increase the data availability and throughput by

spreading it into nodes through a peer-to-peer connection.

Other unused resources would be useful and no single point of

failure. For monitoring, we develop a real-time data flow from

each node and information of status nodes. As our expected,

performance shown that our proposed system has better

throughput than the existing system.

Keywords— Decentralized Storage, Data Management, Peer-

to-Peer Networks, Distributed File Technology, Automatically

Data Storing, Data Monitoring

I. INTRODUCTION

In general, space weather term refers to physical
processes that occur in the space environment that can affect
human activities on earth and space. Represented by the
National Institute of Aeronautics and Space (LAPAN;
https://lapan.go.id), Indonesia is actively developing a
system that providing information and forecast related to
space weather activities for ASEAN region called Space
Weather Information and Forecast Services (SWIFtS;
http://swifts.sains.lapan.go.id). SWIFtS researchers and
forecasters conduct daily data analysis and processing to
provide accurate and actual information on the SWIFtS
website, especially for the users who use the application
leveraging space technology (satellite or radio wave
technology). For this reason, the data availability from space
weather observation instruments is continuously updated to
maintain information. At the background process, SWIFtS is
supported by the data storage system that collects the data
from various instruments installed on observatory stations
spread throughout areas in Indonesia. The daily information
provided by SWIFtS requires the data storage system to be
continuously running well and providing real-time data to
fulfill researchers’ needs.

 Fig 1. Map of LAPAN observatories in Indonesia

There are eight observatory stations (hereafter referred to
as sites) spread in different islands and one central data
center in Bandung, Java Island (Figure 1). The existing
system implements a client/server hierarchy based on the
centralized model. We indicate that the centralized method of
the current system has several drawbacks, such as low data
availability, low throughput, and increased time for data
updates. Currently, the main server in Bandung is the central
destination for storing data. A large number of connection to
the Bandung server can create a high network load on the
server. The current system employs two crontabs (cron
tables), which are configuration files that specify shell
commands for running a script program on a schedule. All
synchronization processes run at one time to synchronize all
data through default SSH port utilizing the Rsync tool. Thus,
this process creates a queue of jobs that have to be executed
while the various data from each site and instrument should
be stored safely in real-time and without damage. Low
throughput affects the duration of data synchronization due
to the high network load; thus, synchronization takes longer.

The decentralized storage system is a method of storing
data by encrypting and distributing the data across a
decentralized network. It does not rely on a central service
provider for data storage [1]. Decentralized storage can
increase the percentage of data availability by spreading files
to be stored on the hosts that are connected peer-to-peer.
Consequently, each host can exchange files directly as well
as have roles as a client and server, would reduce user
dependency on a single server [2]. The IPFS provides a high
data throughput with a content-addressed block storage
model, requires no central server, and distributes and stores
the data in spread locations [3, 4]. In this paper, a new
system is proposed for data management using a
decentralized storage model leveraging the IPFS distributed
system for storing and sharing the space weather observation
data across the peer-to-peer network. The novelty points of

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

this paper are we used the directory watcher method for
realtime data update and peers monitoring in the cluster.

 Moreover, a technique for monitoring the system
through active and passive approaches is developed. The
passive approach is intended to measure the flow of data
between nodes and the active approach determines the status
of each node (e.g., whether online or not). Afterward, system
performance is evaluated and analyzed by comparing the
performance of the proposed system with that of the existing
one. The tested parameters are the mean time of replication
of files and the mean throughput from a node.

II. RELATED WORKS

This section reviews related works that leverage
decentralized network approaches to store the data; however,
this approach needs the user as an actor to upload or
download the data manually. Most of the papers explained
the utilization of the IPFS as their storage system combined
with blockchain. However, they did not disclose detailed
information on how the IPFS works.

Sia is a simple decentralized storage system proposed by
Vorick, et al. [5]. They need clients as users to upload and
download files in the Sia network; there is no automated
process involved with getting or putting data. Likewise, there
are Storj [6] and Maidsafe [7] which also need actors to store
and retrieve files manually from the system. Moreover, those
systems rely on the blockchain network and have a more
commercial focus, needing cryptocurrency to use their
service. In 2018, Nygaard [8] leveraged the IPFS-Cluster to
limit the replication of data only for peer members. His
proposed system also needs the client as actors for storing
data manually. However, our proposed system does not need
cryptocurrency or tokens because there is no commercial
orientation in this system. Moreover, this system also
requires no manual process to store the data because various
data are produced by the instruments continuously, such as
every 5 min, 15 min, hourly, and daily. It would be
impossible for a human to conduct this as a manual process.

 The building of a scaled-out Network Attached Storage
(NAS) and the IPFS to store an object spread through the
Fog/Edge infrastructure has been proposed by Confais, et al.
[4] and also Brisbane [9], who proposed decentralization for
big data by He leverages the IPFS by changing the Hadoop
Distributed File System (HDFS) as the file system. However,
this system did not provide a detailed explanation of how the
IPFS works, stores, and retrieves the data. In this thesis, a
detailed explanation is provided of how the IPFS works as a
distributed file system using a P2P network.

Indeed, the IPFS provides a web user interface on each
node connected to the network. One of the features displayed
in all global peerIDs that are connected to the IPFS. However,
this system only needs status information from all nodes in
the cluster and data flow from each node added to the IPFS.
In addition, we need a centralized monitoring system that can
determine the current condition of all peers in our cluster that
the IPFS does not have today.

III. PROPOSED SYSTEM ARCHITECTURE

All Peers are restricted to a private IPFS network that has
been prepared for the process of distributing files between
peers automatically. For this reason, another scheme is used
to do automatic pinning for every file added to the IPFS.
IPFS-Cluster is a tool used to coordinate between IPFS

daemons running on different hosts [10]. If one peer
disconnected from the network or delete that object, it still
provided by others. In addition, once peer distributes an
object, it's no more duplication in the network and still be an
object with the same hash or called deduplication. Thus, this
scenario may not significantly increase the storage space of
the nodes since each file with identical content will not be
stored.

Fig 2. The proposed system architecture

The instrument PCs have two types of operating systems
installed, Windows and Unix. Figure 2 shows the
architecture of the proposed system. The data
communication module between server and PC is using
TCP/IP. For the data transfer module, FTP is used for data
transfer to the Windows OS, whereas SFTP is used for the
PC which has the Unix OS installed. Each of them has a data
collector as a place where data is stored for sending the latest
data automatically to the data collector on the site server
(IPFS node) and then generates a log file containing its
metadata. This watcher is built with the watchdog library
from python.

Fig 3. Network diagram

On the IPFS node, a data collector watcher service was
built using the pyInotify library from python and a client
library of the IPFS API. Besides, LibP2P is the major part of
our system that requires some mandatory tasks such as
allowing for data and communication transport, creation of a
distributed hash table, and file exchange in the system. For
the data communication module, the link between the PC and
the server is connected by TCP/IP. Each server has a node ID
and uses a multiaddr-formatted byte string to communicate
among nodes in the overlay network. When nodes need to
exchange files, a peer-to-peer connection is built between
them, so a node can connect to another directly (see Figure
3). Our proposed system does not replicate the file to all
peers in consideration of network and storage cost. So, this
system only replicates the data to the other three nodes for
our default setting similar to the replication factor in the
Hadoop Distributed File System (HDFS) [11].

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

According to table 1, we consider selecting other nodes
for storing the data based on the same geographical location
with Bandung in Java Island, the nodes which have the
lowest total size in collecting data for daily, nodes with
higher bandwidth capacity than others and prefer to choose
nodes that connected by fiber optic link. So, we select the
node in Garut and Pasuruan as the second and third center of
data replication. In figure 3, our proposed scheme add the
second server in Garut and Pasuruan that has a role only
receive the data replication from others together with
Bandung. This approach inspired by hosting role in Sia
project [5].

Fig 4. Sequence diagram of storing files

The IPFS relies on the BitSwap protocol to exchange
blocks between nodes and a distributed hash table (DHT) to
store the pointers of peers who have actual locations of files
and node information [3, 12]. In the IPFS network, a file
which is uploaded will map into an object with fixed size
using a combination of a hash function and base encoding.
An object might be several chunks that are called blocks. The
SHA256 hash function has been applied by the IPFS and
made the size of each block at most 256 KB because the
IPFS uses the Rabin fingerprint method for chunking files
[13].

 A simple web interface has been implemented that is
built with the Bootstrap 3.3 framework and JQuery. For data
transfer, NodeJS version 10.15.3 was implemented as the
HTTP server. Each node has several log files according to its
instruments. Therefore, separate JQuery functions are used
for reading and extracting the data from those files; one
function is responsible only for one file. In Figure 4, we can
see this monitoring that contains information on the data that
has been successfully stored in the IPFS network and
distributed to other nodes. In addition, the status of each
node is also displayed to determine the current state of the
nodes. The log files automatically update every minute. For
data monitoring, logs were sent from all sites to the central
server. Meanwhile, for node status monitoring, status
information comes from files generated by the central server
after finishing pings. In Figure 4, Nodes 2 and 3 succeed in
showing their data because their state is online, contrary to
Node 4, which has no data information due to its offline
status.

IV. PEFORMANCE EVALUATION

 This experiment is intended to evaluate the Rsync that
has been implemented by the existing system compared to
the IPFS coupled with the IPFS-Cluster. The tests were
conducted using two PC machines. As for the parameters,
the number of files (100) was varied with distinct sizes (256
KB, 1 MB, and 100 MB) and was generated randomly by the
/dev/urandom interface for all tests. There were 100 files of
each size with five trials for both Rsync and the IPFS +
IPFS-Cluster. A total of 9000 datasets were tested for a total
of 33,768 GB for its overall size. Moreover, the network
latency between computer 1 and Computer 2 was set such at
no latency (default), 5 ms and 20 ms latency. Latencies are
emulated artificially using the Linux Traffic Control (tc) tool.

Figure 5 presents the replication time of files as a
function of latency when all files are only replicated from
computer 2 to computer 1. The main observation is that the
latency has a greater impact when replicating large files. File
size determines the duration of replication; the larger of file
size, the longer it will take to replicate the file. The effect of
latency also appears to be very significant on the replication
time. It can be seen that high latency makes a considerable
difference compared to low latency. It takes 297.64 s to
replicate files of 1 GB (100 x 10 MB) when the default
latency is considered, and 448.12 s when the latency of 20
ms is used for the IPFS+IPFS-Cluster. This happened

TABLE I. OBSERVATORY STATIONS STATUS IN Q1 OF 2019

No.

Observatory Stations

Total Amount

of Daily Data

(MB)

Bandwidth

(Mbps)

Internet

Connection

Link Type

Frequent of Server Down

(Jan – Apr 2019)

Network

Offline

(FO Cut)

Power

Outages

OS

Failures

1 Garut (Java Island) 21 5 Fiber Optic 0 0 0

2 Pasuruan (Java Island) 39 7 Fiber Optic 4 0 0

3 Biak (Papua Island) 46 5 Wireless 1 30 0

4 Agam (Sumatera Island) 76 4 Wireless 2 0 0

5 Kupang (Nusa Tenggara Island) 106 5 Wireless No data No data No data

6 Pontianak (Borneo Island) 110 7 Fiber Optic 3 4 0

7 Manado (Sulawesi Island) 151 1 Fiber Optic No data No data No data

8 Sumedang (Java Island) 175 4 Fiber Optic 4 0 0

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

similarly to Rsync which was 336.36 s at the default latency
and 469.05 s when the latency was 20 ms.

Fig 5. Mean of time to replicate files with a size of {25.6 MB, 100 MB, 1
GB} as a function of latency

 Another interesting observation is that file replication by
Rsync experiences a slight drop within small and large
latencies where it takes 13.86 s and 12.8 s for file sizes of
25.6 MB (100 x 256 KB) and 38.22 s and 38.19 s,
respectively, with a size of 100 MB (100 x 1 MB). This
might be due to the use of more stable bandwidth or no usage
sharing Wi-Fi with other users. On the other hand, file
replication by the IPFS + IPFS-Cluster has a rising trend
when latency increases. Replication takes 8.95 s to 9.66 s for
the file size of 25.6 MB (100 x 256 kB) and 36.53 s to 45.41
s with the file size of 100 MB (100 x 1 MB). Overall, the
results show that replication using the IPFS + IPFS-Cluster is
faster than Rsync. This is because the IPFS replicates all files
using chunks formed by the hash function which have a
small and fixed size.

Fig 6. Mean throughput of a node

The mean node throughput is derived by dividing the

average size of the replicated file by the transfer time.

Figure 7 shows the results that the throughput by the IPFS +

IPFS-cluster is greater than that of Rsync for each file size.

The main observation is that the file size affects the level of

throughput produced. Where the highest throughput

generated is 3,359,763 B/s for the IPFS + IPFS-Cluster and

2,973,005 B/s for Rsync for a 1 GB (100 x 10 MB) file size.

Meanwhile, a slight decrease in throughput of

approximately 243,904 B/s occurs in the IPFS + IPFS-

Cluster when replicating files with a size of 25.6 MB (100 x

256 KB) and 100 MB (100 x 1 MB). This is in contrast to

the throughput generated by Rsync, which shows an

increasing trend of approximately 18% to 35% for all tested

files. Afterward, we also compared this data with network

bandwidth measurement was supported by the Iperf for

deriving the average network bandwidth between computer

2 and computer 1. The average bandwidth of the

measurement was calculated at 26.4 Mbits/s. If we compare

the highest node throughput score of the IPFS + IPFS-

cluster meets the average throughput generated by the

network with a rating (3,359,763 B/s * 8)/1,000,000 = 26.8

Mbits/s.

CONCLUSION

In this paper, we proposed a new system to increase data
availability for supporting SWIFtS on IPFS node. A
directory watcher is added forcing both instrument PCs to
synchronize data and nodes to upload data automatically.
Moreover, the implementation of the IPFS-Cluster is useful
to replicate the data between peers as well as to limit the
distribution process only in cluster peer members.
Furthermore, a combination technique for system monitoring
has been implemented and is seen to be useful in providing
real-time data flow and node status. On the evaluation of the
finished work, aiming to learn the proposed system
performance compared with the existing system, the
evaluation has shown that the IPFS-based solution is able to
reduce the time of file replication and support high-
throughput.

ACKNOWLEDGMENT

This work was supported by the Institute for Information
and Communications Technology Promotion (IITP) grant
funded by the Korea government (MSIT) (No.2018-0-00539,
Development of Blockchain Transaction Monitoring and
Analysis Technology).

REFERENCES

[1] Wang, S., Zhang, Y., & Zhang, Y. A blockchain-based framework for
data sharing with fine-grained access control in decentralized storage
systems. IEEE Access, 6, 38437-38450. 2018.

[2] Wennergren, O., Vidhall, M., Sörensen, J., & Steinhauer, J.
Transparency Analysis of Distributed File Systems: Bachelor Degree
Project in Information Technology. University of Skövde, Sweden.
2018.

[3] Benet, J. IPFS-content addressed, versioned, P2P file system. arXiv
preprint arXiv:1407.3561. 2014.

[4] Confais, B., Lebre, A., & Parrein, B. An object store service for a
Fog/Edge Computing infrastructure based on IPFS and a scale-out
NAS. In Fog and Edge Computing (ICFEC), 2017 IEEE 1st
International Conference, pp. 41-50. 2017.

[5] Vorick, D., & Champine, L. “Sia: Simple decentralized storage”.
2014. [online]. Available: https://sia. tech/sia.pdf.

[6] Wilkinson, S., Boshevski, T., Brandoff, J., & Buterin, V. “Storj a
peer-to-peer cloud storage network”. 2014.

[7] Lambert, N., Ma, Q., Irvine, D. “Safecoin: The Decentralized Storage
Token”. 2015. [online]. Available: https://docs.maidsafe.net/
Whitepapers/pdf/Safecoin.pdf.

[8] Nygaard, R. Distributed Storage with Strong Data Integrity based on
Blockchain Mechanisms (Master's thesis, University of Stavanger,
Norway). 2018.

[9] Brisbane, S. Decentralising Big Data Processing (Bachelor thesis, The
University of New South Wales). 2016 .

[10] P. Labs. “IPFS Cluster“. 2019. [online]. Available: https://cluster
.ipfs.io/.

[11] Borthakur, D. HDFS Architecture Guide. Hadoop Apache Project, 53,
1-13. 2008.[online]. Available: https://docs.huihoo.com/apache/
hadoop/1.0.4/hdfs_design.pdf.

[12] P. Labs. “IPLD”. 2019. [online]. Available: https://ipld.io.

[13] Kaiser, J., Meister, D., Brinkmann, A., & Effert, S. Design of an exact
data deduplication cluster. In 2012 IEEE 28th Symposium on Mass
Storage Systems and Technologies (MSST), pp. 1-12. 2012.

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

