
Dynamic Auto-scaling of VNFs based
on Task Execution Patterns

Asif Mehmood
Computer Engineering

Jeju National University
Jeju, South Korea
asif@jejunu.ac.kr

Talha Ahmed Khan
Computer Engineering

Jeju National University
Jeju, South Korea

talhajadun@gmail.com

Javier Jose Diaz Rivera
Computer Engineering

Jeju National University
Jeju, South Korea

shaifvier@gmail.com

Wang-Cheol Song
Computer Engineering

Jeju National University
Jeju, South Korea

philo@jejunu.ac.kr

Abstract—Investigation and collection of real-time data plays
a very crucial part in the orchestration of network resources.
Selection of the correct data is very important as it decides to auto-
scale the resources. In cloud & SDN environments such as NFV,
auto-scaling becomes more critical in terms of precision and
accuracy. In our case, we propose a solution for auto-scaling the
network resources based on the calculations made for every
action’s execution-time [1] of respective instances of a VNF. The
instances for each VNF are auto-scaled on the basis of execution-
times per time slot, and the number of cores that are assigned by
the usage of weight factor [2] used for virtual/physical cores.
Hence by using the proposed solution, we are able to enhance the
proper resource provisioning to fulfill the dynamic demands [3] of
future mobile networks.

Keywords—autoscaling, datacenter, sdn, nfv, vnf, execution-
time, self-management, networks

I. INRODUCTION

With the advent of technology, SDN revolutionized the field
of networks. The price of network devices got cheaper as the
brain of those devices were extracted and put into a software.
With this simple and robust approach of SDN, there were a lot
of complications related to performance as well. Centralizing the
control plane of network functions led to the idea of developing
virtual network functions which provided a clean platform for
network developers to evolve the networking systems.

Autoscaling in networks is relatively more important. Its
importance is in itself an ocean, due to the nfv architecture.
Previously, when the network operators had to scale up/down
the resources it was a quite hectic job which was also prone to
errors. Another disadvantage of traditional networks was that
there was no room to improve networks. With the possibility of
autoscaling network resources, there is still a lot of effort to do
because of different factors involved such as clouds machines
having different capabilities. So, this point drew our attention to
develop applications that take decision to autoscale VNFs.

Our proposal uses clocks per cycle unit to decide how much
cores to be assigned and we use monitored [4] execution-times
[1] of respective VNFs by our proposed microservice. We use
weight factor for hyperthreading overhead caused by v-cores.

So, in order to fulfil the criteria of our proposal, we use
different projects and terminologies in the paper which are listed
as M-CORD [5], OpenStack and ONOS. M-CORD platform
[6]

refers to mobile central office re-architected as a datacenter. It is
owned by ONF and it provides a platform to develop and deploy
network functions and a limited control of updating the network
resources at runtime. This project makes the use of two widely
used open source projects OpenStack and ONOS integrated with
their own built XOS [6]. It is on the top layer of these projects
allowing us to build deploy and run everything as a service.

We developed the NSSF [7] compliant to 3GPP standards
and integrated it with the OAI provided network functions. Then
the autoscaling algorithm was implemented and deployed to get
the benefits mentioned in the coming sections.

Section II provides a brief overview of the necessary
literature to clarify all of the project use-cases and terminologies
used throughout this paper. Section III contains the proposed
system in full details. It starts with the figure of our architecture
and then proceeds with the detailed mechanism of this
architecture. Section III puts light on evaluation of our system
with the experimental setup procedure, comparisons made.
Section IV wraps up document by making concluding remarks.

II. LITERATURE REVIEW

As it is obvious that the networks will be dependent on
systems which are automatic and intelligent. One aspect which
we propose and evaluate in this paper is related to autoscaling
the network resources. A crucial factor that needs to be
considered is clocks per cycle.

A. Related to resource-allocation

Kapil Kumar from IIIT proposed a system to dynamically
allocate memory and cores for VMs. Author uses a concept of
using feedback control techniques [3] based on monitored data
for each of process and execution-times. Proposal gives us
confidence to apply dynamicity in resource allocation process.

In paper “Autonomic Workload and Resource Management
of Cloud Computing Services”, author proposes a solution to
reduce power consumption of machines by allocating cores and
memory up to optimum range [2] by to the factors chosen.

“Auto scaling of data plane VNFs in 5G networks” [8] refers
to a system design proposed to autoscale the data plane VNFs in
5G networks. This works relates to our work in terms of network
slicing as both of the systems which are termed as LTE
Advanced and 5G aim to provide it.

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

Another document termed as “A Context Based Scheduling
Approach for Adaptive Business Process in the Cloud” takes
execution time into account to reduce cloud resources usage by
considering a mechanism based on execution times of a task. We
take maximum execution-time instead of minimum execution-
time [1] to reduce the chance of service-disruption and delay.

We also refer the work done by In-Yong Jung in his research
paper “Selective Task Scheduling for Time-targeted Workflow
Execution on Cloud” [9]. It uses to algorithms to estimate the
processing-time for applications or programs running on cloud.
As capability of both algorithms are different in calculating
different type of tasks. We also consider this work for the future
to improve the system further for better results.

B. Related to platforms

A paper “An intent-based mechanism to create a network
slice using contracts” written by Asif Mehmood, developed a
solution to dynamically create network slices with help of
contracts [7]. This work has been helpful in the way that this
approach defines the proper flow of execution needed to allocate
resources and then to provision them accordingly.

In the paper “Implementation of VNFC monitoring driver in
the NFV architecture”, author proposes a monitoring [4] driver
which is closer to the other management services in order to
achieve the direct communication. This approach enhances the
process of fetching the information from the resources.

The paper “Introducing network slice management inside
M-CORD-based-5G framework” puts some light on framework
provided by ONF “M-CORD”. The author proposes a slice
management technique for 5G network functions. This literature
is useful in the sense to get a know how to setup environment [5]
and to deploy VNFs inside this framework.

III. SYSTEM DESIGN

Our system contains two contributions. An autoscaling
application as depicted in “Fig. 1” at the application layer. It
includes modules such as Autoscale-controller, Information-
handler and a Configuration-invoker.

Fig. 1. Overall System Architecture for Autoscaling VNFs.

The second part of the contribution is a microservice based
monitoring service shown at the management layer of the NFV
architecture. It interacts with the core-network elementary
management services which are termed as synchronizers [6].

A. Autoscaling application

The application’s sole purpose is to autoscale the VNFs. It
consists of 3 modules termed as Autoscale Controller,
Information Handler and Configuration Invoker.

The steps to complete the mechanism by our proposed
system can be seen in “Fig. 2”. It is shown to avoid ambiguity.
These steps work in parallel to provide a full fledge functionality.
The upper part of “Fig. 1” is purely developed by us and
remaining part of system is modified to fit in proposed criteria.

To clarify how the functionality achieves its goals, we start
from monitoring microservice. Service fetches information from
each of VNFs. We have modified synchronizers to improve
efficiency. For this purpose, the API interfaces were used in
order to attain platform independency. During this interval, each
of the VNF’s information is fetched and then passed over to the
Information Handler which stores the information in its store.

Autoscaling application comes into action to scale up/down
VNFs respectively. The flow chart and algorithm are described
in the coming subsections. The final decisions made by
autoscaling includes conversion of execution times to required
cps. The process moves further by requesting Configuration
Invoker to generate configuration for VNFs. Configurations are
specified in TOSCA [6] acceptable by XOS [10] and passed to
Autoscale Controller, through an API interface. This way, we
push system towards a state where resources are not over-
utilized neither under-utilized.

Fig. 2. Mechanism-steps for the overall system.

B. Microservice based monitoring service

The microservice shown in “Fig. 2” is deployed in parallel
with the synchronizers which are often termed as the elementary
management services. The purpose of deploying it in such a
fashion is to enhance the performance of fetching information.
As it is very close to the deployed VNF’s management services,
latency is reduced. It can be seen in “Fig. 1” that synchronizers
and the monitoring microservice are deployed on head-node. It
is shown in “Fig. 1” that each of VNF is composed of a number

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

of actions having its own execution-times. Requests posted to
each VNF is in fact a request to perform an action at the end,
which has a fixed execution-time.

C. Autoscale application internals

The internals of this application include an Information
handler, Autoscale controller and a Configuration invoker. Each
module playing its role to fulfil the criteria

1) Information handler
The module stores real-time information for the number of

the requests received by each action of VNF. It is evident from
“Fig. 3” that we can extract information of cps from execution-
times for each request. This approach allows the usage of real-
time data and a highly customizable approach to store data.

Fig. 3. Design for the Information Handler’s storage.

2) Autoscaling controller
This subsection explains decision-making process of

autoscaling the VNFs by iterating each of the VNF instances as
shown in “Fig. 4” and “Fig. 5”. Information of instance is
fetched from database shown in “Fig. 3”. Then with help of
using number of requests and execution-times we estimate cps.

If the resources to be allocated are onto a physical machine,
the weight factor for core is set to a value of 1.0 otherwise it is
set as 0.8. Reason being that the virtual-core has less tendency
than the physical-core.

Fig. 4. Flow-chart for Autoscaling decision-making.

Algorithmic representation of mechanism is shown in “Fig.
5”. For each iteration, relevant and required resources are
calculated based on cps. Finally, the algorithm auto-scales the

resources as an outcome. By taking a few important factors into
consideration shown in both “Fig. 4” and “Fig. 5”. Efficiency of
system developed will be evaluated

Fig. 5. Algorithm for Autoscaling decision-making.

3) Configuration invoker
This section describes responsibility of module. It generates

configurations and then passes onto the Autoscaling controller,
in TOSCA format. These configurations are reflected on system
via synchronizers which were modified for each VNF instance.

IV. EVALUATION AND RESULTS

We start by evaluating our results in cpu usage by VNFs,
assigned cpu usage and total cpu available usage of whole
system. “Table I” shows cpu usage in percentages. It can be
observed that usage assigned is fit according to situation. At time
t=0, the usage is nearly 60%. In addition, with passage of time
(from t=0 to t=4), the usage percentage increases up to 90%.

TABLE I. USAGE OF ASSIGNED – INDIVIDUAL

VNF
Usage % at time "t” for VNFs

t = 0 t = 1 t = 2 t = 3 t = 4

eNB 64.29 90.00 90.00 80.00 88.89
vMME 64.29 80.00 100.00 90.00 90.00
NSSF 33.33 100.00 75.00 75.00 75.00
vHSS 66.67 60.00 75.00 100.00 80.00

vSPGWC 58.33 75.00 100.00 62.50 83.33
vSPGWU 83.33 63.64 100.00 100.00 90.00

The graphical form of “Table I” is given in “Fig. 6”. All
VNFs usage is increasing with passage of time showing that
resources are being used up to almost full capacity.

Fig. 6. Usage of Assigned CPU – individual.

Table referred as “Table II” shows cpu usage in cores for all
VNFs at time interval “t” and the assigned cpu is decreases. For
time interval t=0, usage of assigned resources is moving
upwards and only 13% part is not in use for interval t=4.

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

TABLE II. USAGE OF ASSIGNED – OVERALL

Time
Overall assigned usage % at time “t”

Assigned Assign used Used Available

t = 0 64 41 64.06 35.94
t = 1 47 36 76.60 23.40
t = 2 42 39 92.86 7.14
t = 3 45 38 84.44 15.56
t = 4 44 38 86.36 13.64

The graphical form drawn from “Table II” can be seen in
“Fig. 7” below, that the resources are being fully utilized.

Fig. 7. Overall assigned usage % at time “t”.

Table referred as “Table III” shows the readings observed
for total number of cores over the time intervals “t”. From time
interval t=0 to t=4, the freed-up resources have moved from 0%
to 31.25%.

TABLE III. USAGE OF TOTAL CPU – OVERALL

Time
Total CPU usage % at time “t”

Total T- used T-free Used Free

t = 0 64 64 0 100.00 0.00
t = 1 64 47 17 73.44 26.56
t = 2 64 42 22 65.63 34.38
t = 3 64 45 19 70.31 29.69
t = 4 64 44 20 68.75 31.25

The graphical form drawn from “Table III” can be seen in
“Fig. 8” below, showing that the resources are being freed up as
the time is passing from t=0 to t=4.

Fig. 8. Total CPU usage % at time “t” (bar-graph).

The graphical form drawn from “Table III” can be seen in
“Fig. 9” below which shows that the total number of resources
are freed with the passage of time. The curve line-graph can be
seen in the below figure.

Fig. 9. Total CPU usage % at time “t” (curve-graph).

V. CONCLUSION

As autoscaling is an important aspect of management of
resources and an addition is its automatic nature. We managed
to propose a solution where the different factors such as
execution-time, cps and weight-factor are considered during the
decision-making process of autoscaling. This approach resulted
in better resource management capabilities as the time interval
passes on. The first reason being, it’s very true nature of freeing
up the unused or unneeded resources. Second reason was the
usage of assigned resources were optimal reflecting that the
resources were not overutilized nor underutilized. For future
direction, we plan to enhance this mechanism by taking other
resources into account and by introducing other factors as the
different resource type usages rely on a variety of other factors.

ACKNOWLEDGEMENTS

This research was supported by the MSIT (Ministry of
Science and ICT), Korea, under the ITRC (Information
Technology Research Center) support program (IITP-2019-
2017-0-01633) supervised by the IITP (Institute for Information
& communications Technology Planning & Evaluation).

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (NRF-
2016R1D1A1B01016322).

REFERENCES
[1] Molka Rekik; Khouloud Boukadi; Hanene Ben Abdallah, “A Context

Based Scheduling Approach for Adaptive Business Process in the Cloud”
2014 IEEE 7th International Conference on Cloud Computing

[2] Farah Fargo; Cihan Tunc; Youssif Al-Nashif; Ali Akoglu; Salim Hariri,
“Autonomic Workload and Resources Management of Cloud Computing
Services” 2014 International Conference on Cloud and Autonomic
Computing

[3] Kapil Kumar; Nehal J. Wani; Suresh Purini, “Dynamic Memory and Core
Scaling in Virtual Machines” 2015 IEEE 8th International Conference on
Cloud Computing

[4] Hyunsik Yang; Briytone Mutichiro; Younghan Kim, “Implementation of
VNFC monitoring driver in the NFV architecture” 2017 International
Conference on Information and Communication Technology
Convergence (ICTC)

[5] Muhammad Tahir Abbas; Talha Ahmed Khan; Asif Mahmood; Javier
Jose Diaz Rivera; Wang-Cheol Song, “Introducing network slice
management inside M-CORD-based-5G framework” NOMS 2018 - 2018
IEEE/IFIP Network Operations and Management Symposium

[6] https://guide.xosproject.org/dev/synchronizers.html

[7] Asif Mehmood; Talha Ahmed Khan; Javier Diaz Rivera; Wang-Cheol
SONG, “An intent-based mechanism to create a network slice using
contracts” Proceedings of Symposium of the Korean Institute of
communications and Information Sciences

[8] Tulja Vamshi Kiran Buyakar; Anil Kumar Rangisetti; A Antony Franklin;
Bheemarjuna Reddy Tamma, “Auto scaling of data plane VNFs in 5G
networks” 2017 13th International Conference on Network and Service
Management (CNSM)

[9] In Yong Jung; Chang Sung Jeong, “Selective Task Scheduling for Time-
Targeted Workflow Execution on Cloud” 2014 IEEE Intl Conf on High
Performance Computing and Communications, 2014 IEEE 6th Intl Symp
on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on
Embedded Software and Syst (HPCC,CSS,ICESS)

[10] Chen Zheng; Lei Wang; Sally A. McKee; Lixin Zhang; Hainan Ye;
Jianfeng Zhan, “XOS: An Application-Defined Operating System for
Datacenter Computing” 2018 IEEE International Conference on Big Data
(Big Data)

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

