
Deep Learning Based Anomaly Detection Scheme in
Software-Defined Networking

Yang Qin*, Junjie Wei, Weihong Yang
Department of Computer Science,

Harbin Institute of Technology (Shenzhen),
Shenzhen, China,

*corresponding author: csyqin@hit.edu.cn

Abstract—Software Defined Networking (SDN) has attracted
more and more attention due to its prominent features that are
different from the traditional network. SDN is programmable
through which controller can modify the rules in the switch.
However, security was not considered in its initial design, and
many manufacturers no longer support Transport Layer
Security (TLS) due to the cost. Although many machine learning
based approaches have been implemented in SDN, they all need
features that experts extract from original data. However, the
manual extraction increases the level of human interaction and
decreases detection accurate. This paper presents a malicious
network traffic classification method based on Convolutional
Neural Network (CNN) and Recurrent Neural Network (RNN) to
address these concerns. Our proposed method is implemented in
Graphic Process Unit (GPU) enabled TensorFlow. We evaluated
our proposal on three datasets. The results demonstrate that our
proposal achieves improvements in term of detection accuracy
and stability over existing approaches and strong potential for
user in SDN security.

Keywords—SDN; CNN; RNN; anomaly detection

I. INTRODUCTION

In recent years, with the emergence and development of
Software Defined Network (SDN), the network structure is
more flexible and network management is more convenient
[1]. SDN breaks the network function into control logic and
forwarding logic: switch becomes a simple forwarding-
processing device, and the control logic can be implemented
by a central controller. However, some potential security risks
have been introduced because security issues are not
considered in the initial design. For example, Shin and Gu
points out that the Openflow protocol is at risk of being
attacked by DDoS (Distributed Denial of Service) [2]. Due to
the special logic structure of SDN, once the controller is
breached, most of network devices or even the whole network
cannot work normally. There are mainly three types of
attacks on controllers: fraud attack (e.g., DoS), intrusion
attack such as unauthorized login, and malicious tampering
attack (e.g., tampering with data in switches). In this paper,
we focus on dealing with the first two types of attacks.

There are some recent works using machine learning
methods for malicious detection [3-6]. Mehdi et al. [3]
proposes to use a programmable router as a platform to detect
malicious data streams in an office or home network. Jin and
Wang [4] design a system that uses the structure of SDN to
analyze real-time data streams to detect malicious flows. Gao

et al. [5] uses the deep belief network and NSL-KDD data set
for training. Xu and Liu [6] claim that if a host or server is
under DDoS attack, they will receive more data streams than
the outgoing data stream. However, these methods have
obvious deficiencies such as the need for human experts to
interact and define data features and models, and low
detection accuracy. In order to solve the shortcomings of the
above methods, this paper proposes a model for automatically
extracting the features of data packets based on CNN and
RNN, improving the accuracy, and reducing the level of
human interaction.

The main contributions of this paper are summarized as
follows. We firstly build a model based on CNN and RNN,
which can automatically extract features from original and
then classify the malicious network flow in SDN environment.
We simulate three common attacks with mininet and pox,
using python. We implement the experiment to verify the
effectiveness of the model.

The remainder of this paper is organized as follows.
Section II covers some related research work, Section III
introduces the specific structure of the model, Section IV
shows the corresponding experimental results and analysis.
Section V concludes this paper.

II. BACKGROUND

Intrusion detection are generally based on signature and
anomaly detection. Signature based method can achieve high
detection accuracy of some known attack types. However, the
unknown attack cannot be detected. Anomaly-based detection
methods are generally solved by machine learning. The
features of the network flows are first designed, and then a
machine learning algorithm is used to identify new attack
network flows [7]. It has the advantage of recognizing the
types of attacks currently known and also detecting unknown
types of attacks. However, the design of network flow features
is a very challenging task. Different attack types may depend
on different features. Moreover, the machine learning based
detection method has a low detection rate.

Niyaz and Sun [8] utilizes stack auto-encoder to reduce
data features, and the proposed algorithm can improve
accuracy and reduce computation. An asymmetric stack auto-
encoder is proposed in [9] to learn features. Convolutional
neural networks can extract data features from layer-by-layer
convolution functions and widely used in image classification.
Similar to other neural networks, feature extraction is an

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

important aspect [10]. The features learned in the shallow layer
will be input to the next layer to extract more abstract features.
A pooling layer between every two adjacent convolutional
layers. The role of the pooling layer is to reduce the size of the
representation data. The Recurrent Neural Network (RNN) is
also consists of an input layer, a hidden layer, and an output
layer. But the biggest difference in recurrent neural networks is
that, in addition to the connection between layers, there is also
a connection between neurons in each layer. However, as the
time series is long, the gradient disappears [11]. Therefore,
LSTM is proposed. The structure of the cell is retained or
changed by the structure of the gates, including input gates,
output gates, and forgetting gates [12]. Gated Recurrent Unit
(GRU) is a variant of LSTM. GRU keeps the LSTM effect
while making the structure simpler. It has only two gates,
including the update gate and the reset gate [13].

III. CNN-RNN BASED MODEL

We present the design of the CNN-RNN based model. First,
the input data are processed by the preprocess procedure,
followed by the algorithm based on CNN and RNN. Finally,
the classification is done by linear classifier. The process of the
CNN-RNN based model is shown in Fig. 1.

Start

Network
traffic
dataset

preprocess

10-fold Cross-
Validation

Feature learning
(CNN)

Feature learning
(RNN)

linear classifer

Is
Cross-Validation

completed

Test &
Aggregated

results
End

Training data

Yes

No

Testing data

 Fig. 1. The CNN-RNN based classification model.

A. Data Processing

We use the pcap to capture network traffic. The original
pcap packet contains a 24-byte pcap packet header, a 16-byte
data packet header and a data packet. The pcap packet header
(as shown in Fig. 2) includes the timestamp of capture, the
length of the saved packet, and the true length of the packet. If
the packet is fragmented, it is possible that the value of Len is
greater than the value of caplen.

Timestamp caplen Len
Fig. 2. The format of pcap packet header.

We extract all the contents from packet header. If it is a
TCP packet, it will be processed according to the TCP header
format of Fig. 3. All the character descriptors in the packets
are counted, and then a description dictionary is created.
Moreover, every descriptor in the dictionary corresponds to a
unique index.

80 1042 SYN ACK Seq=0 Ack=1 Win=5840 Len=0 MSS=1460 SACK_PERM=1
Fig. 3. TCP header.

B. Feature Extraction Based on CNN and RNN

This part mainly includes embedded layer, convolution
network and recurrent neural network layer. The main function

of the embedding layer is to encode the packet headers into a
two-dimensional matrix. The descriptor vector can be pre-
trained, or trained in the process of training CNN, but the
former one will be 100 times faster. If the pre-trained
descriptor vector is used, it is divided into a static method and a
non-static method. The former refers to the parameter that no
longer adjusts the descriptor vector in the process of training
CNN, and the latter adjusts the parameters of the descriptor
vector during the training process. Therefore, the latter result is
better than the former. Here we pre-train descriptor vectors.
The descriptor vectors are shown in Fig. 4.

0.13003991 0.22881057 ... 0.24961747 0.08153807

-0.06620334 -0.1124947 ... 0.18774514 -0.07204840

-0.06610855 0.00927361 ... 0.09578553 0.00616110

-0.09615227 -0.02547764 ... -0.02810406 -0.08124200
Fig. 4. The table of descriptor vectors.

The convolution layer extracts different n-gram features
by convolution. The input A will be transformed into a
two-dimensional matrix x by the embedding layer. If the
length of the input is T and the size of the descriptor vector
is d , the size of the two-dimensional matrix x is T d .
The size of the convolution kernel is generally set to n d ,
where n is the length of convolution kernel, and d is the
width of convolution kernel. This width is the same as the
dimension of the descriptor vector, that is, the convolution is
only along the sequence of inputs. The choices of n can be
various, such as 3, 4, and 5. For an input of size T d , if the
size of the convolution kernel is chosen to be 3 d , the result
obtained after convolution is a vector of 3 1 1T . CNN
can use multiple different types of kernels at the same time,
and there can be more than one kernel for each size. If we use
kernels with size of 3 d , 4 d , 5 d and m kernels per
type, the convolutional network has a total of 3 m
convolution kernels. For simplicity, we give a simple example
in Fig. 5 in which T is 7 and d is 3.

The max-pooling layer takes the maximum value of
several one-dimensional vectors obtained after convolution,
and then splices it into one piece as the output value of this
layer. If the size of the convolution kernel is 3, 4, and 5, and
each size has M kernels, then after max-pooling, 3M
scalar values will be obtained. Splicing scalar values together,
we get the final 3 1M vector. The significance of the
max-pooling layer is to extract the most activated features of
the convolution extraction.

The RNN layer uses a hidden layer unit of 300 neurons. In
this paper, the Gated Recurrent Unit (GRU) core is used. The
GRU only contains two control gates: the reset gate and the
update gate. The reset gate combines the input data with the
network data, and the update gate determines how much of the
previous information is retained. If the reset gate in the
network is all 1 and the update gate is all 0, then the GRU is a
normal RNN network. The reset gate is shown as follow.
 1()t r t r tr W x U h
where tx represents the input at time t which is obtained from
CNN model, rW corresponds to the weight of the input, rU
represents the weight of the previous moment state, and 1th
represents the state of the previous moment state.
The input gate is shown as follow.

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

 1()t z t z tz W x U h
where tx represents the input at time t which is obtained

from CNN model, zW corresponding to the input weight,

zU represents the weight of the previous time state, 1th
representing the state of the previous moment state. Finally,

output candidate
~

th and output
th are computed.

~

1tanh()t h t t t th W x U r h

~

1(1)t t t t th z h z h

7*3
representations

filter_size=[3,4]
max-pooling

size=4

convolutional layer
num_filter=4

max-
pooling

fully-
connected

Fig. 5. The process of convolution.

C. Classify

The last layer is linear classifier, as is shown in following
formula.
 (, ,)i if x w b wx b
where ix represents the input at time t which is obtained
from RNN model, w corresponding to the input weight, b
represents the bias. In order to evaluate the model, the cross
entropy loss function is selected. The specific formula is as
follows：

1 1

(,) log
N M

ij ij
i j

loss Y Y y y

where ijy represents the true probability that the -thi sample

is classified as -thj class, ijy represent the predict probability

that the -thi sample is classified as -thj class. N represent the
total number of samples. M represent the total number of
classes.

IV. EXPERIMENT

A. Metrics

Three metrics were used to evaluate the accuracy of the
model: accuracy, recall and F1-score [14]. Accuracy is used to
measure the detection performance of the model. The recall
rate is used to measure the ability of the model to detect
malicious data streams. F1 score is the harmonic average of
model accuracy and recall. If F1-score is higher, the model is
more stable.

Three metrics were used to evaluate the accuracy of the
model. They are accuracy, recall rate and F1-score,
respectively [14]. The confusion matrix is shown in Table I.
Accuracy is used to measure the detection performance of the
model, it indicates the percentage of true detection over total
traffic. The recall is used to measure the ability of the model to
detect malicious data streams, it shows the percentage
predicted intrusions over predicted intrusions and normal
traffic traces. F1 score is the harmonic average of model
accuracy and recall. If F1-score is higher, the model is more
stable.

TABLE I. CONFUSION MATRIX.

True situation
Predicted result

Positive example Negative example

Positive example TP FN

Negative example FP TN

B. Dataset

We first generate some network traffic with mininet and
pox, which are famous simulators for SDN. Our topology
contains one switch and two host. One is attacker and the other
is victim. We use python to generate packets in attacker, and
then send them to attacker, and finally capture the packets
between victim and attacker. We simulate syn flood, port scan,
guess ftp password. The self-generated dataset is named
sim_data. We compare with a deep learning-based model
propose for network intrusion detection in SDN. Besides
sim_data, the experiment uses CTU-13 data set [15]. The
CTU-13 dataset is the data traffic captured by Stratosphere
Labs in real-world environments, including normal traffic,
botnet traffic, background traffic. We compare with a deep
learning-based malicious flow detection (TSDNN) [16].

C. Settings

The parameters of the convolutional neural network and
deep recurrent neural network are shown in Table II. This
includes some parameter settings for CNN, such as the size of
the convolution kernel, the number of convolution kernels, and
the number of training samples. It also includes the parameter
settings of the RNN, including the number of hidden layer
units, and regularization method that is used to improve the
generalization ability of the network.

TABLE II. EXPERIMENT SETTINGS.
parameter value

Dropout_keep_prob 0.5
embedding_dim 300
evaluate_every 200

filter_sizes 3,4,5
hidden_units 300

l2_reg_lambda 0.0
max_pool_size 4

non_static ‘false’
num_epochs 1
num_filters 32

D. Results and Analysis

We use 10 cross-validation and set the bach_size at 128 on
CTU-13 and sim_data. The model’s best accuracy can reach
99.86% on CTU-13 and 99.84% on sim_data, as shown in the
Table III. At the beginning of the calculation, the loss reduces

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

slowly. As the parameters are updated, the accuracy becomes
higher. Because the parameters have big difference from real
values. After the data volume reaches a certain level, the
parameter updating is no longer obvious, and the recognition
accuracy is not improved much. At the same step, CNN-RNN
performs better on CTU-13 than sim_data. The main reason is
that parameters are updated to be closer to real value on
sim_data than CTU-13.

TABLE III. TRAINING PROCESS.
Step CTU-13 sim_data

ACC LOSS ACC LOSS
400 0.9963 0.1844 0.9959 0.004

600 0.9975 0.2283 0.9979 0.0038

800 0.9980 0.0001 0.9980 0.0007
1000 0.9986 0.0008 0.9984 6.931e-05

The relationship between the accuracy of the models and
batch_size in Tabel IV shows that as the batch sizes increases,
the accuracies of two models decrease. But if the batch sizes is
too small, the training process will take more time. Table IV
also show in the same batch_size, our CNN-RNN’s accuracy is
higher than DNN model on both CTU-13 and sim_data. And
accuracies of both models are better on CTU-13 than sim_data.
The main reason is that our sim_data is obtained in simulating
environments.

TABLE IV. ACCURACY WITH DIFFERENT BATCH SIZE.
Batch_size ACC

CTU-13 sim_data
CNN-RNN TSDNN CNN-RNN TSDNN

32 0.9989 0.9922 0.9987 0.8501

64 0.9982 0.9922 0.9992 0.8501
128 0.9981 0.9920 0.9984 0.8521

256 0.9972 0.9920 0.9977 0.7703
The CNN-RNN model has a higher recall rate for normal

data and F1-score in Table V both on CTU-13 and sim_data.
That is our model can detect more normal data network traffic
and more stable on CTU-13.

TABLE V. DNN VS CNN-RNN.
Dataset RECALL F1-score

TSDNN CNN-RNN TSDNN CNN-RNN
CTU-13 0.998 0.9976 0.949 0.9976
sim_data 0.50 0.80 0.33 0.79

V. CONCLUSION

In this paper, we discusse the problems of SDN security
and the current approaches to deal with them. We designs a
model based on CNN and RNN to learn features without
manual interaction. Further, we classify the network traffic
using linear classification. We implement our proposed model
in TensorFlow. We evaluate our proposal on three datasets (i.e.,
CTU-13 , CSIC and sim_data). Experiments show that our
model can achieve high accuracy, recall and F1 score.

Although our model has achieved the above promising
results, we acknowledge that it is not perfect and there is
further room for improvement. In future work, the first avenue
of exploration for improvement will be to use this model in

SDN environment. We will then look to expand upon our
existing evaluations by utilizing real-world backbone network
traffic to demonstrate the merits of the extended model.

 ACKNOWLEDGMENT

This work was supported by the Science and Technology
Fundament Research Fund of Shenzhen under grant
JCYJ20160318095218091, JCYJ20170307151807788.

REFERENCES
[1] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security in

software defined networks,” IEEE Communications Surveys and
Tutorials, vol. 18, no. 1. pp. 623–654, 2016.

[2] S. Shin and G. Gu, “Attacking software-defined networks,” in
Proceedings of the second ACM SIGCOMM workshop on Hot topics in
software defined networking - HotSDN ’13, 2013.

[3] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly
detection using software defined networking,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2011.

[4] R. Jin and B. Wang, “Malware detection for mobile devices using
software-defined networking,” in Proceedings - 2013 2nd GENI
Research and Educational Experiment Workshop, GREE 2013, 2013.

[5] N. Gao, L. Gao, Q. Gao, and H. Wang, “An Intrusion Detection Model
Based on Deep Belief Networks,” in Proceedings - 2014 2nd
International Conference on Advanced Cloud and Big Data, CBD 2014,
2015.

[6] Y. Xu and Y. Liu, “DDoS attack detection under SDN context,” in
Proceedings - IEEE INFOCOM, 2016.

[7] D. Kwon, K. Natarajan, S. C. Suh, H. Kim, and J. Kim, “An Empirical
Study on Network Anomaly Detection Using Convolutional Neural
Networks,” in 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), 2018, pp. 1595–1598.

[8] Q. Niyaz, W. Sun, and A. Y. Javaid, “A deep learning based DDoS
detection system in software-defined networking (SDN),” arXiv Prepr.
arXiv1611.07400, 2016.

[9] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A Deep Learning
Approach to Network Intrusion Detection,” IEEE Trans. Emerg. Top.
Comput. Intell., 2018.

[10] M. F. Umer, M. Sher, and Y. Bi, “Flow-based intrusion detection:
Techniques and challenges,” Computers and Security. 2017.

[11] B. J. Radford, L. M. Apolonio, A. J. Trias, and J. A. Simpson, “Network
Traffic Anomaly Detection Using Recurrent Neural Networks,” arXiv
Prepr. arXiv1803.10769, 2018.

[12] L. Bontemps, V. L. Cao, J. McDermott, and N. A. Le-Khac, “Collective
anomaly detection based on long short-term memory recurrent neural
networks,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2016.

[13] A. F. Agarap, “A Neural Network Architecture Combining Gated
Recurrent Unit (GRU) and Support Vector Machine (SVM) for Intrusion
Detection,” in Proceedings of the 2018 10th International Conference
on Machine Learning and Computing, 2018, pp. 26–30.

[14] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
“Deep learning approach for Network Intrusion Detection in Software
Defined Networking,” in Proceedings - 2016 International Conference
on Wireless Networks and Mobile Communications, WINCOM 2016:
Green Communications and Networking, 2016.

[15] S. García, M. Grill, J. Stiborek, and A. Zunino, “An empirical
comparison of botnet detection methods,” Comput. Secur., 2014.

[16] Y. C. Chen, Y. J. Li, A. Tseng, and T. Lin, “Deep learning for malicious
flow detection,” in IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications, PIMRC, 2018.

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

