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Abstract—Software Defined Networking (SDN) has attracted 
more and more attention due to its prominent features that are 
different from the traditional network. SDN is programmable 
through which controller can modify the rules in the switch. 
However, security was not considered in its initial design, and 
many manufacturers no longer support Transport Layer 
Security (TLS) due to the cost. Although many machine learning 
based approaches have been implemented in SDN, they all need 
features that experts extract from original data. However, the 
manual extraction increases the level of human interaction and 
decreases detection accurate. This paper presents a malicious 
network traffic classification method based on Convolutional 
Neural Network (CNN) and Recurrent Neural Network (RNN) to 
address these concerns. Our proposed method is implemented in 
Graphic Process Unit (GPU) enabled TensorFlow. We evaluated 
our proposal on three datasets. The results demonstrate that our 
proposal achieves improvements in term of detection accuracy 
and stability over existing approaches and strong potential for 
user in SDN security. 
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I. INTRODUCTION

In recent years, with the emergence and development of 
Software Defined Network (SDN), the network structure is 
more flexible and network management is more convenient 
[1]. SDN breaks the network function  into control logic  and  
forwarding logic: switch becomes a simple forwarding-
processing device, and the control logic can be implemented 
by a central controller. However, some potential security risks 
have been introduced because security issues are not  
considered in the initial design. For example, Shin and Gu 
points out that the Openflow protocol is at risk of being 
attacked by DDoS (Distributed Denial of Service) [2]. Due to 
the special logic structure of SDN, once the controller is 
breached, most of network devices or even the whole network 
cannot work normally. There are mainly three types of 
attacks on controllers: fraud attack (e.g., DoS), intrusion 
attack such as unauthorized login, and malicious tampering 
attack (e.g., tampering with data in switches). In this paper, 
we focus on dealing with the first two types of attacks. 

There are some recent works using machine learning 
methods for malicious detection [3-6]. Mehdi et al. [3] 
proposes to use a programmable router as a platform to detect 
malicious data streams in an office or home network. Jin and 
Wang [4] design a system that uses the structure of SDN to 
analyze real-time data streams to detect malicious flows. Gao 

et al. [5] uses the deep belief network and NSL-KDD data set 
for training. Xu and Liu [6] claim that if a host or server is 
under DDoS attack, they will receive more data streams than 
the outgoing data stream. However, these methods have 
obvious deficiencies such as the need for human experts to 
interact and define data features and models, and low 
detection accuracy. In order to solve the shortcomings of the 
above methods, this paper proposes a model for automatically 
extracting the features of data packets based on CNN and 
RNN, improving the accuracy, and reducing the level of 
human interaction.  

The main contributions of this paper are summarized as 
follows. We firstly build a model based on CNN and RNN, 
which can automatically extract features from original and 
then classify the malicious network flow in SDN environment. 
We simulate three common attacks with mininet and pox, 
using python. We implement the experiment to verify the 
effectiveness of the model.  

The remainder of this paper is organized as follows. 
Section II covers some related research work, Section III 
introduces the specific structure of the model, Section IV 
shows the corresponding experimental results and analysis. 
Section V concludes this paper. 

II. BACKGROUND

Intrusion detection are generally based on signature and 
anomaly detection. Signature based method can achieve high 
detection accuracy of some known attack types. However, the 
unknown attack cannot be detected. Anomaly-based detection 
methods are generally solved by machine learning. The 
features of the network flows are first designed, and then a 
machine learning algorithm is used to identify new attack 
network flows [7]. It has the advantage of recognizing the 
types of attacks currently known and also detecting unknown 
types of attacks. However, the design of network flow features 
is a very challenging task. Different attack types may depend 
on different features. Moreover, the machine learning based 
detection method has a low detection rate. 

Niyaz and Sun [8] utilizes stack auto-encoder to reduce 
data features, and the proposed algorithm can improve 
accuracy and reduce computation. An asymmetric stack auto-
encoder is proposed in [9] to learn features. Convolutional 
neural networks can extract data features from layer-by-layer 
convolution functions and widely used in image classification. 
Similar to other neural networks, feature extraction is an 
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important aspect [10]. The features learned in the shallow layer 
will be input to the next layer to extract more abstract features.  
A pooling layer between every two adjacent convolutional 
layers. The role of the pooling layer is to reduce the size of the 
representation data. The Recurrent Neural Network (RNN) is 
also consists of an input layer, a hidden layer, and an output 
layer. But the biggest difference in recurrent neural networks is 
that, in addition to the connection between layers, there is also 
a connection between neurons in each layer. However, as the 
time series is long, the gradient disappears [11]. Therefore, 
LSTM is proposed. The structure of the cell is retained or 
changed by the structure of the gates, including input gates, 
output gates, and forgetting gates [12]. Gated Recurrent Unit 
(GRU) is a variant of LSTM. GRU keeps the LSTM effect 
while making the structure simpler. It has only two gates, 
including the update gate and the reset gate [13]. 

III. CNN-RNN BASED MODEL 

We present the design of the CNN-RNN based model. First, 
the input data are processed by the preprocess procedure, 
followed by the algorithm based on CNN and RNN. Finally, 
the classification is done by linear classifier. The process of the 
CNN-RNN based model is shown in Fig. 1. 
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 Fig. 1. The CNN-RNN based classification model. 

A. Data Processing 

We use the pcap to capture network traffic. The original 
pcap packet contains a 24-byte pcap packet header, a 16-byte 
data packet header and a data packet. The pcap packet header 
(as shown in Fig. 2) includes the timestamp of capture, the 
length of the saved packet, and the true length of the packet. If 
the packet is fragmented, it is possible that the value of Len is 
greater than the value of caplen. 

Timestamp caplen Len  
Fig. 2. The format of pcap packet header. 

We extract all the contents from packet header. If it is a 
TCP packet, it will be processed according to the TCP header 
format of Fig. 3. All the character descriptors in the packets 
are counted, and then a description dictionary is created. 
Moreover, every descriptor in the dictionary corresponds to a 
unique index. 

80 1042 SYN ACK Seq=0 Ack=1 Win=5840 Len=0 MSS=1460 SACK_PERM=1  
Fig. 3. TCP header. 

B. Feature Extraction Based on CNN and RNN 

This part mainly includes embedded layer, convolution 
network and recurrent neural network layer. The main function 

of the embedding layer is to encode the packet headers into a 
two-dimensional matrix. The descriptor vector can be pre-
trained, or trained in the process of training CNN, but the 
former one will be 100 times faster. If the pre-trained 
descriptor vector is used, it is divided into a static method and a 
non-static method. The former refers to the parameter that no 
longer adjusts the descriptor vector in the process of training 
CNN, and the latter adjusts the parameters of the descriptor 
vector during the training process. Therefore, the latter result is 
better than the former. Here we pre-train descriptor vectors. 
The descriptor vectors are shown in Fig. 4. 

0.13003991 0.22881057 ... 0.24961747 0.08153807

-0.06620334 -0.1124947 ... 0.18774514 -0.07204840

-0.06610855 0.00927361 ... 0.09578553 0.00616110

-0.09615227 -0.02547764 ... -0.02810406 -0.08124200  
Fig. 4. The table of descriptor vectors. 

The convolution layer extracts different n-gram features 
by convolution. The input A  will be transformed into a 
two-dimensional matrix x  by the embedding layer. If the 
length of the input is T  and the size of the descriptor vector 
is d , the size of the two-dimensional matrix x  is T d . 
The size of the convolution kernel is generally set to n d , 
where n  is the length of convolution kernel, and d  is the 
width of convolution kernel. This width is the same as the 
dimension of the descriptor vector, that is, the convolution is 
only along the sequence of inputs. The choices of n  can be 
various, such as 3, 4, and 5. For an input of size T d , if the 
size of the convolution kernel is chosen to be 3 d , the result 
obtained after convolution is a vector of  3 1 1T    . CNN 
can use multiple different types of kernels at the same time, 
and there can be more than one kernel for each size. If we use 
kernels with size of 3 d , 4 d , 5 d  and m kernels per 
type, the convolutional network has a total of 3 m  
convolution kernels. For simplicity, we give a simple example 
in Fig. 5 in which T  is 7 and d  is 3. 

The max-pooling layer takes the maximum value of 
several one-dimensional vectors obtained after convolution, 
and then splices it into one piece as the output value of this 
layer. If the size of the convolution kernel is 3, 4, and 5, and 
each size has M  kernels, then after max-pooling, 3M   
scalar values will be obtained. Splicing scalar values together, 
we get the final  3 1M    vector. The significance of the 
max-pooling layer is to extract the most activated features of 
the convolution extraction. 

The RNN layer uses a hidden layer unit of 300 neurons. In 
this paper, the Gated Recurrent Unit (GRU) core is used. The 
GRU only contains two control gates: the reset gate and the 
update gate. The reset gate combines the input data with the 
network data, and the update gate determines how much of the 
previous information is retained. If the reset gate in the 
network is all 1 and the update gate is all 0, then the GRU is a 
normal RNN network. The reset gate is shown as follow. 
 1( )t r t r tr W x U h    
where tx  represents the input at time t  which is obtained from 
CNN model, rW corresponds to the weight of the input, rU  
represents the weight of the previous moment state, and 1th   
represents the state of the previous moment state. 
The input gate is shown as follow. 
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 1( )t z t z tz W x U h    
where tx  represents the input at time t  which is obtained 

from CNN model, zW  corresponding to the input weight, 

zU represents the weight of the previous time state, 1th   
representing the state of the previous moment state. Finally, 
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Fig. 5. The process of convolution. 

C. Classify 

The last layer is linear classifier, as is shown in following 
formula. 
 ( , , )i if x w b wx b   
where ix  represents the input at time t  which is obtained 
from RNN model, w  corresponding to the input weight, b  
represents the bias. In order to evaluate the model, the cross 
entropy loss function is selected. The specific formula is as 
follows： 


1 1

( , ) log
N M

ij ij
i j

loss Y Y y y
 

     

where ijy  represents the true probability that the -thi  sample 

is classified as -thj  class, ijy  represent the predict probability 

that the -thi sample is classified as -thj class. N   represent the 
total number of samples. M  represent the total number of 
classes.  

IV. EXPERIMENT 

A. Metrics 

Three metrics were used to evaluate the accuracy of the 
model: accuracy, recall and F1-score [14]. Accuracy is used to 
measure the detection performance of the model. The recall 
rate is used to measure the ability of the model to detect 
malicious data streams. F1 score is the harmonic average of 
model accuracy and recall. If F1-score is higher, the model is 
more stable. 

Three metrics were used to evaluate the accuracy of the 
model. They are accuracy, recall rate and F1-score,  
respectively [14]. The confusion matrix is shown in Table I. 
Accuracy is used to measure the detection performance of the 
model, it indicates the percentage of true detection over total 
traffic. The recall is used to measure the ability of the model to 
detect malicious data streams, it shows the percentage 
predicted intrusions over predicted intrusions and normal 
traffic traces. F1 score is the harmonic average of model 
accuracy and recall. If F1-score is higher, the model is more 
stable.  

TABLE I.  CONFUSION MATRIX. 

True situation 
Predicted result 

Positive example Negative example 

Positive example TP FN 

Negative example FP TN 

B. Dataset 

We first generate some network traffic with mininet and 
pox, which are famous simulators for SDN. Our topology 
contains one switch and two host. One is attacker and the other 
is victim. We use python to generate packets in attacker, and 
then send them to attacker, and finally capture the packets 
between victim and attacker. We simulate syn flood, port scan, 
guess ftp password. The self-generated dataset is named 
sim_data. We compare with a deep learning-based model 
propose for network intrusion detection in SDN. Besides 
sim_data, the experiment uses CTU-13 data set [15]. The 
CTU-13 dataset is the data traffic captured by Stratosphere 
Labs in real-world environments, including normal traffic, 
botnet traffic, background traffic. We compare with a deep 
learning-based malicious flow detection (TSDNN) [16]. 

C. Settings 

The parameters of the convolutional neural network and 
deep recurrent neural network are shown in Table II. This 
includes some parameter settings for CNN, such as the size of 
the convolution kernel, the number of convolution kernels, and 
the number of training samples. It also includes the parameter 
settings of the RNN, including the number of hidden layer 
units, and regularization method that is used to improve the 
generalization ability of the network. 

TABLE II.  EXPERIMENT SETTINGS. 
parameter value 

Dropout_keep_prob 0.5 
embedding_dim 300 
evaluate_every 200 

filter_sizes 3,4,5 
hidden_units 300 

l2_reg_lambda 0.0 
max_pool_size 4 

non_static ‘false’ 
num_epochs 1 
num_filters 32 

D. Results and Analysis 

We use 10 cross-validation and set the bach_size at 128 on 
CTU-13 and sim_data. The model’s best accuracy can reach 
99.86% on CTU-13 and 99.84% on sim_data, as shown in the 
Table III. At the beginning of the calculation, the loss reduces 
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slowly. As the parameters are updated, the accuracy becomes 
higher. Because the parameters have big difference from real 
values. After the data volume reaches a certain level, the 
parameter updating is no longer obvious, and the recognition 
accuracy is not improved much. At the same step, CNN-RNN 
performs better on CTU-13 than sim_data. The main reason is 
that parameters are updated to be closer to real value on 
sim_data than CTU-13.  

TABLE III.  TRAINING PROCESS. 
Step CTU-13 sim_data 

ACC LOSS ACC LOSS 
400 0.9963 0.1844 0.9959 0.004 

600 0.9975 0.2283 0.9979 0.0038 

800 0.9980 0.0001 0.9980 0.0007 
1000 0.9986 0.0008 0.9984 6.931e-05 

The relationship between the accuracy of the models and 
batch_size in Tabel IV shows that as the batch sizes increases, 
the accuracies of two models decrease. But if the batch sizes is 
too small, the training process will take more time. Table IV 
also show in the same batch_size, our CNN-RNN’s accuracy is 
higher than DNN model on both CTU-13 and sim_data. And 
accuracies of both models are better on CTU-13 than sim_data. 
The main reason is that our sim_data is obtained in simulating 
environments. 

TABLE IV.  ACCURACY WITH DIFFERENT BATCH SIZE. 
Batch_size ACC 

CTU-13 sim_data 
CNN-RNN TSDNN CNN-RNN TSDNN 

32 0.9989 0.9922 0.9987 0.8501 

64 0.9982 0.9922 0.9992 0.8501 
128 0.9981 0.9920 0.9984 0.8521 

256 0.9972 0.9920 0.9977 0.7703 
The CNN-RNN model has a higher recall rate for normal 

data and F1-score in Table V both on CTU-13 and sim_data. 
That is our model can detect more normal data network traffic 
and more stable on CTU-13.  

TABLE V.  DNN VS CNN-RNN. 
Dataset RECALL F1-score 

TSDNN CNN-RNN TSDNN CNN-RNN 
CTU-13 0.998 0.9976 0.949 0.9976 
sim_data 0.50 0.80 0.33 0.79 

V. CONCLUSION 

In this paper, we discusse the problems of SDN security 
and the current approaches to deal with them. We designs a 
model based on CNN and RNN to learn features without 
manual interaction. Further, we classify the network traffic 
using linear classification. We implement our proposed model 
in TensorFlow. We evaluate our proposal on three datasets (i.e., 
CTU-13 , CSIC and sim_data). Experiments show that our 
model can achieve high accuracy, recall and F1 score.  

Although our model has achieved the above promising 
results, we acknowledge that it is not perfect and there is 
further room for improvement. In future work, the first avenue 
of exploration for improvement will be to use this model in 

SDN environment. We will then look to expand upon our 
existing evaluations by utilizing real-world backbone network 
traffic to demonstrate the merits of the extended model. 
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