Design of a Data Collection System with Data
Compression for Small Manufacturers in Industrial
[oT Environments

Chunju Tsai, Wen-Yueh Shih, Yi-Shu Lu, Jiun-Long Huang and Lo-Yao Yeh
Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
Network and Information Security Division, National Center for High-performance Computing, Taichung City, Taiwan
E-mail: laura830615@gmail.com, wyshih@cs.nctu.edu.tw, barryrodkimo@gmail.com, jlhuang@cs.nctu.edu.tw, lyyeh@narlabs.org.tw

Abstract—With advance of IoT (Internet of Things) technology,
many manufacturers install several sensors to monitor the status
of machines and the health of the whole manufacturing process.
In addition, the sensed data are usually transmitted to a back-
end database for further analysis. However, the dramatic volume
of data sensed by the sensors causes the problem of huge storage
requirement and network traffic for the small medium manufac-
turers which have limited resource and budget in IT (Information
Technology). To deal with this problem, we design a two-layered
architecture using compression technique to reduce the network
traffic. In addition, we use MongoDB, a NoSQL database, to
store the compressed data due to MongoDB’s excellent scale-
out ability and cost-efficiency. We conduct several experiments
to measure the performance of the proposed architecture with
several compression methods. Experimental results show that
with proper lossless compression method, the reduction ratio of
the volume of the data is around 80% at the cost of slight increase
in execution time.

Index Terms—Data storage, Compression, Industrial IoT, IoT

I. INTRODUCTION

With the advance IoT (Internet of Things), the concept
of IIoT (Industrial IoT) [2] has been proposed and widely
adopted by many manufacturers. Manufactures install several
sensors to monitor the status (e.g., electricity, temperature,
vibration and rotation speed) of machines to understand the
health of the machines and the whole manufacturing process.
In addition, the sensed data are usually transmitted to a back-
end database for further analysis. Therefore, adopting IIoT
technology unavoidably results in dramatic increase in storage
requirement and network traffic. Take the data collected from
a real factory in our field trial as an example. When the
sample rate of each sensor is set to 20 Hz, the size of the
data collected from four machines is about 10 GB per month.
The huge requirement in storage and network traffic is a severe
problem for small manufacturers which have limited resource
and budget in IT(Information Technology).

To solve this problem, we design a two-layered architecture
to aggregate the sensed data into a batch and then reduce
the size of each batch by compression. Then, we store the
compressed batch into a database. Instead of using traditional
relational databases such as MySQL, we propose to use Mon-
goDB, a NoSQL database, to store the data due MongoDB’s
excellent scale-out ability and cost-efficiency. Therefore, the

small manufacturers can adopt the propose architecture to store
the huge data with low cost with the aid of compression.

In this paper, we adopt both lossless and lossy compres-
sion methods. The lossless methods include ZLIB, GZIP,
BZIP2, LZMA (Lempel-Ziv-Markov chain algorithm), and
LZO (Lempel-Ziv-Oberhumer algorithm). And the lossy meth-
ods includes FFT (Fast Fourier Transform), DCT (Discrete
Cosine Transform) and DWT (Discrete Wavelet Transform).
In Section IV, we compare all of these compression methods
on compression speed, space savings, and loss percentage
for lossy methods. The information of the comparison will
help the users to make a decision on the selection of the
compression algorithm.

The rest of this paper is organized as follows. Section II in-
troduces some the related works. Then, Section III introduces
the design of our architecture. The experimental results are
shown in Section IV. Finally, Section V concludes this paper.

II. PRELIMINARIES

In [3], Jiang et al. introduce a framework to store the
data gathered from lots of different types of devices. The
proposed data storage framework stores the un-structural data
in HDFS. The structural data (e.g., order information) which
requires ACID (Atomicity, Consistency, Isolation, Durability)
function are stored in a relational database, while the log
data (e.g., sensor readings) are stored in a NoSQL database.
Unfortunately, it does not deal with the problem of rapidly
increasing data volume. In addition, the proposed data storage
framework employs three storage systems (HDFS, a relational
database and a NoSQL database), and such design unavoidably
increases the maintenance cost. Due to the limited IT budget of
small manufacturers, we argue that the proposed data storage
framework is not suitable for them.

In [4], Mai et al. conduct several experiments to compare
several database systems from different aspects such as query
latency with different bulk sizes, number of threads, number
of records, and so on. Although not the best at all aspects,
MongoDB outperforms the others at most cases. In addition,
the database size of MongoDB is relatively small when lots
of records of data are stored. According to the advantages
mentioned above, we choose MongoDB as our back-end
database.

© Copyright IEICE — The 20t Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

Fog computing [5] is an extension of cloud computing.
In contrast to cloud computing, fog computing aims to keep
data and computation close to end users at the edge of the
network. By doing so, fog computing can reduce the network
traffic load, and has some advantages such as low latency, high
bandwidth, geo-distribution [6]. After a fog computing node
completes its tasks, it can send the data to the cloud server
which has a higher computation capability and can perform
complex computation [1].

III. PROPOSED SYSTEM AND IMPLEMENTATION
A. Proposed System

Figure 1 shows the architecture of the proposed system.
In our proposed system, each sensor connects to a Layer 1
Gateway and periodically sends the sensed data to the corre-
sponding Layer 1 Gateway. When receiving a data record, the
Layer 1 Gateway performs the following procedure to handle
the data record.

o Step 1: Store the data record into its local storage.

o Step 2: Check whether the number of the data records
stored in its local storage is greater than a user-defined
threshold. If not, terminate the procedure.

o Step 3: Aggregate the stored data records into a small
batch.

o Step 4: Send the small batch to the corresponding Layer 2
Gateway.

o Step 5: Remove the stored data records from the local
storage.

To reduce the cost, we assume that users will use simple
embedded systems (e.g., Arduino) as Layer 1 Gateways. Thus,
Layer 1 Gateways do not perform compression in Step 3.

When receiving a small batch from the Layer 1 Gateway, the
Layer 2 Gateway handles the received batch by the following
procedure.

o Step 1: Store the small data batch into its local storage.

e Step 2: Check whether the number of the data records
stored in its local storage is greater than a user-defined
threshold. If not, terminate the procedure.

o Step 3: Aggregate the stored data records into a big batch.

o Step 4: Compress the big batch by the underlying com-
pression method.

o Step 5: Send the compressed batch to the data server.

o Step 6: Remove the stored data records from its local
storage.

Since the data records stored in the NoSQL database are
compressed, several Web APIs are implemented to provide the
applications a simple way to query data records of interest.

B. Data Compression

For small manufacturers, the budge of IT is not ample. Thus,
to reduce the cost of storage, Layer 2 Gateways compress the
received data records and send the compressed data to the data
server. Our system employs the following compress methods.

o Lossless compression methods: ZLIB, GZIP, BZIP2,
LZMA, LZO

o Lossy compression methods: FFT, DCT, DWT

In our system, the data are sent from Layer 1 Gateways
to Layer 2 Gateways are in key-value format. Lossless com-
pression methods can be directly used to compress key-value
format data. Unfortunately, the lossy compression methods
can only be used to compress numerical data. Because of the
limitation, when using lossy compression methods to compress
key-value format data, some preprocessing effort has to be
done before compression. For example, the keys (usually in
text format) and the values (usually in numerical format) have
to be handled and stored separately. Moreover, in addition to
the compressed the data records, the capture time of the first
record in this batch is also stored in the database.

When compressing data, the lossy compression methods
usually produce a matrix of coefficients which is usually the
same size as the original data. The value and the number of co-
efficients significantly influence the accuracy of reconstructed
data. Keeping more coefficients will make the decompressed
data more accurate. Therefore, the percentage of the discarded
coefficients affects not only the saving in space, but also the
loss of information. Consider the original coefficient matrix
Cp,n shown in Equation (1), where m indicates the number
of records, and n indicates the number of fields. Let the kept
coefficient matrix Cp, be shown in Equation (1), where p
indicates the number of kept rows. After compression, the
values in matrix C, ,, are rounded into three decimal precision
and are sent to data server.

C1,1 C1,2 Ci,n
C2.1 C2.2 C2n
Cm,n = (])
Cp,1 Cp2 Cp,n
Cm,1 Cm,2 Cm,n
C1,1 C1,2 Cin
C21 €22 C2.n
Cpn =)
Cp,1 Cp2 Cp,n

For decompressing stage, the matrix C), ,, is retrieved from
the database. As shown in Equation (3), the discarded coeffi-
cients are set to zeros to form Cy, ,,. Finally, the corresponding
decompression method is employed to decompress the data on

the basis of C’

m,n*

C1,1 €12 Cin
C21 €22 C2.n
Ch1 Cp2 C
l P, P p,n
Clon = 3)
0 0 0
0 0 0

© Copyright IEICE — The 20t Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

Compressed data flow
Aggregated data flow
Queries and results flow

Sensor

oxx——
API >
Layer1 = -
Gateway I I
Application
=~ _layer2 B
Sensor Gateway ’
coo ‘
Layer 1 FaCtory 1 .mongoDB
Gateway
= = 1 Sensor
Sensor ==
= = Layer1
Layer1 = Gateway
Gateway TR e o2
Layer 2 = =
=~ _layer2 Gateway Sensor
Sensor Gateway Factory 2 Factory 3
Layer 1
Layer 1
Gateway Gateway
Fig. 1. Architecture

IV. EVALUATION
A. Dataset and Performance Metrics

Our dataset is collected from the sensors deployed in a real
factory. The dataset consists of 136,067,155 records, and the
duration of the dataset is about two months. Each record is
composed of 15 columns. Only one column is DateTime type,
while the others are all numeric type. The size of the dataset
is about 20 GB.

In order to demonstrate the data compression ratio clearly,
we use space saving ratio, as shown in Equation (4), as our
metric of data compression.

CompressedSize

Space Saving Ratio =1 — €]

UncompressedSize

Using lossy compression methods avoidably produces loss of
information since the values of the decompressed data will
not be equal to the original values. We use information loss
ratio to measure the degree the loss of information. Suppose
each batch consists of n records and each record consists of f
numerical fields. Let r; be the i-th record and f; ; be value of
the j-th field of the i-th record. Also let #; be the decompressed
i-th record and fi,j be decompressed value of the j-th field of
the ¢-th record. Information loss ratio is defined as the average
of the mean absolute percentage error (MAPE) of each record
in a batch, and can be formulated as Equation (5).

1 n
Information Loss Ratio = - Z MAPE(r;), (5)
i=1
where P
1 Jig— [i
MAPE(r;) = = |12 —Jid | (6)
f z:: fz,j

30000

®
&

25000
—— zlib 20000

ozip
—— bz2
—— Izma
—— Izo0

g
I
\

~

&
[
s O
S 9
S 9o
S 3

~
=)

5000

space savings ratio(%)
time taken(milliseconds)

@
&
|
\

\

\

— —

o)
100000 1000

JE—
1000 10000
number of records per batch

10000 100000
number of records per batch

Fig. 2. Space saving with different Fig. 3.
number of records

Compression time taken
with different number of records

B. Results of Lossless Compression Methods

As shown in Figure 2, the space saving ratio of all lossless
compression methods are not significantly influenced by the
batch size. The space saving ratio of LZO is much less than
the others because the design of LZO aims to offer fast
compression with the cost of low data compression ratio.
Thus, as shown in Figure 3, LZO always spends the least
time in compression. In contrast, although outperforming the
other methods in terms of space saving ratio, LZMA always
has poor performance in compression time. In addition, the
compression time of LZMA increases drastically as the batch
size increases. In our experiment, when the batch size is set
to 100,000 records, the compression time of LZMA is at least
6 times longer than the other methods. We can observe from
Figures 2 and 3 that BZIP2 is able to strike a good balance
between space saving ratio and compression time.

C. Results of Lossy Compression Methods

The compression ability of lossy compression methods
can be tuned by the setting of the percentage of discarded
coefficients. The space saving ratio, compression time and

© Copyright IEICE — The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

1000 records 10000 records 100000 records

1000 records 10000 records 100000 records

space savings(%)

log loss percentage(%)

—— fft 4
*— dct
dwt

10 25 50 75 90 10 75 90 10 25 50 75 90

25

discarding percentage

Fig. 4. Space Savings with Multiple Discard Percentages
1000 records

10000 records 100000 records

3 —— fft | P70 —— fft
2.4 -
< 140 o dct | 1550 o dct
3 22 S dwt
2 135 \ 152.5
= \
E2o —— fft s 150.0
]
£ +— dct 13.0
£ 147.5
2 16 12,5 145.0
4
& BN 1425
g14 —_— 12.0
g e — 140.0
12

0 %5 50 75 £ 0 %5 50 75 90 10 25 50 75 90
discarding percentage

Fig. 5. Compression Time with Multiple Discard Percentages

information loss ratio of all lossy compression methods with
the percentage of discarded coefficients varied are shown in
Figures 4, 5, and 6, respectively. As shown Figure 4, DCT
performs the best on space saving ratio. However, DCT spends
the most time in compression in most cases. As the amount
of data grows up, FFT performs worse and worse on space
saving ratio, while DCT and DWT perform steadily on space
saving ratio. We can observe from Figures 4, 5, and 6 that
DWT is able to strike a balance among space saving ratio,
compression time and information loss ratio.

V. CONCLUSION

In this paper, we proposed a data collection system for
Industrial IoT environments with the aide of two-layered
gateways and a NoSQL database (MongoDB). To decrease the
storage cost, before sending data to MongoDB, Layer 2 Gate-
ways perform compression to reduce the data size. Based on
our experimental results, we have the following observations.
When information loss is not tolerable, lossless compression
methods should be employed. Our experimental results show
that BZIP2 is a good choice due to the balance between
space saving ratio and compression time. When some slight
information loss is acceptable, lossy compression methods
are recommended due to their high space saving ratio and
fast compression. Our experimental results show that DWT
is a good choice because of its high space saving ratio, low
compression time and low information loss.

REFERENCES

[1] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu. Fog Computing: A
Platform for Internet of Things and Analytics. In Big Data and Internet
of Things: A Roadmap for Smart Environments, pages 169—186. Springer,
2014.

H. Boyes, B. Hallag, J. Cunningham, and T. Watson.
Internet of Things (IIoT): An Analysis Framework.
Industry, 101, 2018.

2] The Industrial

Computers in

(3]

[4]

(31

(6]

10 25 50 75 90 10 75 90 10 25 50 75 90

25
discarding percentage

Fig. 6. Information Log Loss with Multiple Discard Percentages

L. Jiang, L. Da Xu, H. Cai, Z. Jiang, F. Bu, and B. Xu. An IoT-
Oriented Data Storage Framework in Cloud Computing Platform. IEEE
Transactions on Industrial Informatics, 10(2):1443-1451, May 2014.

P. T. A. Mai, J. K. Nurminen, and M. Di Francesco. Cloud Databases
for Internet-of-Things Data. In Proceedings of IEEE International
Conference on Internet of Things (iThings), pages 117-124, 2014.

N. Mohan and J. Kangasharju. Edge-Fog Cloud: A Distributed Cloud for
Internet of Things Computations. In Proceedings of the 2nd Cloudification
of the Internet of Things (CloT), pages 1-6, 2016.

S. Yi, Z. Hao, Z. Qin, and Q. Li. Fog Computing: Platform and
Applications. In Proceedings of the 3rd IEEE Workshop on Hot Topics
in Web Systems and Technologies (HotWeb), pages 73-78, 2015.

© Copyright IEICE — The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

