
Improved Secure Computation over Real Numbers
and Its Application to Reliability Engineering

Takumi Iseki* Masahiro Hayashi**
Major of Informatics, Graduate School of Integrative Science and Engineering, Tokyo City University

Tokyo, Japan
Email: *g1981804@tcu.ac.jp **mhaya@tcu.ac.jp

Abstract—Secure computation over real numbers has recently
been proposed for outsourcing computations while maintaining
high security. This scheme has had difficulty in practice because
it causes an unreasonably large computational complexity in
decryption. While previous research resolved this difficulty,
problems remain because the encryption is based on a kind of
Caesar cipher known to be weak in terms of security. This paper
proposes an improvement on the previous research. The key
idea is replacing the differential operator used in the encryption
and decryption process with another one so that encryption can
be altered to use additional secret real numbers. This addition
realizes stronger security because hackers must find not only
keys but also these secret real numbers.

Index Terms—Secure computation, Full homomorphic encryp-
tion, Reliability engineering, Cyber security

I. INTRODUCTION

While computing is a useful tool in science and engineer-
ing (including network management) computations sometimes
become very difficult especially when they become very large.
In such cases, they can be outsourced to subcontractors or to
powerful supercomputers through cloud network systems.

However, outsourcing has a security problem. That is, when
we outsource a computation, we must give important data,
such as on the customers, the reliability of equipment, etc., to
the outsource side.

Secure computation is a solution to this problem, and fully
homomorphic encryption (FHE) is a key technology [1]-[5].
This sort of encryption is realized by a mapping Φ having the
following three properties, where x and y are numbers:

Φ(x+ y) = Φ(x) + Φ(y), Φ(x× y) = Φ(x)× Φ(y),

Φ−1 is obtained by security keys.

Gentry [1] proposed the FHE scheme and Refs. [2]-[3]
made improvements to it. On the other hand, Gai et al. [4]
claimed that their computation becomes prohibitively large
when real numbers are used. They proposed a new scheme,
which this paper calls ‘secure computation over real numbers’
as a solution to the problem. (Gai et al. uses the phrase ‘full
homomorphic encryption over real numbers’, whereas we will
use the more easily understandable ‘secure computation’.)

Gai’s solution, avoids Gentry’s problem of high computa-
tional complexity when using real numbers.

However, our previous study [5] claimed that Gai’s approach
requires the same number of operations (additions and multi-
plications) between the decryption on the outsourcing side and
the computation on the subcontractor side in the worst case.
In such case, it is obviously faster and more secure to execute
a computation without outsourcing it. This is problematic.

Our previous study [5] solved this problem by focusing
on computations involving polynomials whose input variables
are n real numbers. The method of Ref. [5] outsources the
computation of a polynomial after encrypting the inputs by
adding a real number H (key). If we repeat the outsourcing
n times while changing the value of H , we can decrypt the
output of the polynomial by multiplying a special matrix with
a vector consisting of encrypted computational results. Ref.
[5] demonstrated its effectiveness in the reliability engineering
field.

However, this approach is still problematic, because the
encryptions of the inputs are executed by adding the same
value H to n inputs in each outsourcing. This implies that
the proposed encryption is a kind of Caesar cipher which is
known to be weak.

This paper proposes to eliminate this weakness by altering
the differential operator used in the scheme of Ref. [5] with
another operator. This alteration in effect changes ‘adding H’
to ‘adding H × λi’. Here,λi is a secret real number.

This improvement realizes a secret computation that is
surely stronger without a serious increase in computational
complexity of encryption and decryption.

II. PREVIOUS RESEARCH

This section explains the most recent research on secret
computation over real numbers in Ref. [5]

A. Preparations

Let f be a polynomial whose input variables are
x1, x2, · · · , xn. The order of f = f(x1, x2, · · · , xn) is the
order of g, where g is a polynomial assuming that x1 = x2 =
· · · = xn in f . For example, the order of f = (1− x1)

2x2
2 is

four because g = (1− x)2x2 + x2 = 2x2 − 2x3 + x4.
We define κH(h) as follows, where d is any differential

operator, and di(h) = d(di−1(h)) with d0(h) = h, and h is
suitably differentiable.

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

κH(h) =

∞∑
i=0

Hi

i!
di(h) (1)

By we replacing d with a specific differential operator D
defined below, we write κH(f) as φH(f).

D(f) =

n∑
i=1

∂f

∂xi

φH(f) =

m∑
i=0

Hi

i!
Di(f) (2)

Here, D is a differential operator and f is a polynomial
of order m. TheFore, it is easily determined that if i > m,
then Di(f) = 0. That’s why ∞ in the definition of κH(f) is
replaced with m in φH(f).

B. Encryption and decryption

The following property was proved in Ref. [5] using the
results of Ref. [6].

PROPERTY 1.
‘For any polynomials f1 & f2, φH(f1 + f2) = φH(f1) +

φH(f2), φH(f1 × f2) = φH(f1)× φH(f2) are true.’
This implies that φH(f) satisfies requirements (I) & (II)

in the Introduction, and its output can be computed in a
finite time. Therefore, fully homomorphic encryption will be
realized if we can find a method of decryption that satisfies
(III). Ref. [5] gave a solution for this decryption.

PROPERTY 2.
‘Let F be an (m+1)×(m+1) matrix, in which each element

(a, b) is Hb−1
a

(b−1)! . Furthermore, let G be an m+1 column vector
whose a− th element is f(x1 +Ha, x2 +Ha, · · · , xn +Ha).
The first element of the column vector obtained by F−1G
equals f , where F−1 is the inverse matrix of F .’

Ref. [5] proved Property 2 using Property 1. The following
is the procedure for executing encryption and decryption if we
want to compute the output of f with inputs x1, x2, · · · , xn.

STEP 1. Prepare m + 1 real numbers H1,H2, · · · ,Hm+1

as secret keys
STEP 2. Outsource the r. h. s. of the following computations.

G1 = f(x1 +H1, x2 +H1, · · · , xn +H1)

G2 = f(x1 +H2, x2 +H2, · · · , xn +H2)

...

Gm+1 = f(x1 +Hm+1, x2 +Hm+1, · · · , xn +Hm+1)

STEP 3. Compute F−1G. The first element of this vector
shows the value of f , where F and G are as below.

F =

H0

1

0!
H1

1

1!
H2

1

2! · · · Hm
1

m!
H0

2

0!
H1

2

1!
H2

2

2! · · · Hm
2

m!
...

...
...

. . .
...

H0
m+1

0!

H1
m+1

1!

H2
m+1

2! · · · Hm
m+1

m!

 , G =

G1

G2

...
Gm+1

C. Motivative example

Let us show a simple example of executing the procedure
in the previous subsection. Let f be f = x1 + x2x3 with
x1 = 0.1, x2 = 0.5, x3 = 0.3.

STEP 1. We prepare H1 = 1.0,H2 = 2.0,H3 = 3.0, and
H4 = 4.0 as secret keys.

STEP 2. We have

G1 = f(x1 +H1, x2 +H1, x3 +H1)

= (0.1 + 1.0) + (0.5 + 1.0)× (0.3 + 1.0) = 3.05

G2 = (0.1 + 2.0) + (0.5 + 2.0)× (0.3 + 2.0) = 7.85

G3 = (0.1 + 3.0) + (0.5 + 3.0)× (0.3 + 3.0) = 14.65

G4 = (0.1 + 4.0) + (0.5 + 4.0)× (0.3 + 4.0) = 23.45.

G =

3.05
7.85
14.65
23.45

STEP 3. F is obtained as follows.

F =

10

0!
11

1!
12

2!
13

3!
20

0!
21

1!
22

2!
23

3!
30

0!
31

1!
32

2!
33

3!
40

0!
41

1!
42

2!
43

3!

 =

1 1 1

2
1
6

1 2 2 4
3

1 3 9
2

9
2

1 4 8 32
3

Accordingly,

F−1G =

1 1 1

2
1
6

1 2 2 4
3

1 3 9
2

9
2

1 4 8 32
3

−1

3.05
7.85
14.65
23.45

 =

0.250
1.80
2.00
23.5

D. Problem of our previous work

The decrypted value of f is 0.250.
Ref. [5] demonstrated the usefulness of the procedure of

Steps 1-3 for secret computation especially in reliability engi-
neering [7][8].

However, this method still has problems because it makes
available the following data to the subcontractor in outsourc-
ing.

x1 +H1, x2 +H1, · · · , xn +H1

x1 +H2, x2 +H2, · · · , xn +H2

...

x1 +Hm+1, x2 +Hm+1, · · · , xn +Hm+1

The openly available data cause the following problems.
Problem 1.
If one key Hj of H1,H2, · · · ,Hn is known to the sub-

contractor, then any input xi can be computed from openly
available data xi +Hj by (xi +Hj)−Hj .

Problem 2.
Even if all of H1,H2, · · · ,Hn are kept secret, the following

important information is not concealed:

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

⟨1⟩ Information about which is bigger between any pair of
xi and xj , as a hacker can find xi < xj if (xi + Hk) <
(xj +Hk)

⟨2⟩ Information about xi − xj , as xi − xj is computed by
(xi +Hk)− (xi +Hk)

III. PROPOSAL

This section proposes an improved method to solve the
problems described at the end of the previous section.

A. Basic idea

Our proposal makes only a small change to the differential
operator used in the scheme of Ref. [5].

Note that the basis of Ref. [5] is Eq. (2) in Subsection A
of Section II. This equation is

φH(f) =

m∑
i=0

Hi

i!
Di(f) (2)

Here, the differential operator D is the one defined in
Section II:

D(f) =

n∑
i=1

∂f

∂xi

Even if we replace φH(f) with φ0H(f), where φ0H(f) is
obtained from φH(f) by replacing D with the following D0,
Property 1 in subsection A of section II is true.

D0(f) =

n∑
i=1

(
∂f

∂xi
× λi)

This is because the proof of Property 1 in Ref. [5]
applies even when D is replaced with any other differ-
ential operator. Therefore, Property 2 is true even if we
replace φH(f) with φ0H(f). Our improvement’s only dif-
ference from the scheme of Ref. [5] is caused by us-
ing a different differential operator in the encryptions of
x1, x2, · · · , xn. In Ref. [5], x1, x2, · · · , xn are encrypted with
x1+Hi, x2+Hi, · · · , xn+Hi, because Ref. [5] uses φHi(x1)

for encryption. That is, when we encrypt x1, x2, · · · , xn

to φHi
(x1), φHi

(x2), · · · , φHi
(xn), φHi

(xi) = H0
i D

0(xj) +
H1

i D
1(xj) = xi + Hi because of the definition of φH().

However, if we use φ0Hi(), then x1, x2, · · · , xn are en-
crypted with x1 +Hiλ1, x2 +Hiλ2, · · · , xn +Hiλn, because
φ0Hi

(xi) = H0
i D

0
0(xj) + H1

i D
1
0(xj) = xj + Hiλi from the

definitions of φ0Hi
() and D0.

B. Details of encryption and decryption

The following is the key property of our proposal.
Property 3.
Let G’ be an m+1 column vector whose a− th element is

f(x1+Haλ1, x2+Haλ2, · · · , xn+Haλn). The first element
of the column vector obtained by F−1G’ equals f , where F
is the same matrix in Property 2 in subsection B of section
III.

Property 3 is proved in the same manner as Property 2 in
Ref. [5] simply by exchanging D() with D0().

The encryption and decryption procedure is obtained from
the steps in subsection B of section II by replacing Gi with
Gi’ in Steps 2 and 3, G with G’ in Step 3, and replacing the
equations in Step 2 with the following ones.

G1’ = f(x1 +H1λ1, x2 +H1λ2, · · · , xn +H1λn)

G2’ = f(x1 +H2λ1, x2 +H2λ2, · · · , xn +H2λn)

...

Gm+1’ = f(x1 +Hm+1, x2 +Hm+1, · · · , xn +Hm+1λn)

C. Motivative example

Let us show a simple example of executing the steps of the
procedure in the previous subsection. Let f and the values of
x1, x2, and x3 be the same as in subsection C of section II.

STEP 1.
We prepare the same values for H1,H2, and H3 as in

subsection C of section II as secret keys, and λ1 = 4.0, λ2 =
5.0, λ3 = 6.0.

STEP 2.
We have

G1 = f(x1 +H1λ1, x2 +H1λ2, x3 +H1λ3)

= (0.1 + 1.0× 4.0) + (0.5 + 1.0× 5.0)

×(0.3 + 1.0× 6.0) = 38.75

G2 = (0.1 + 2.0× 4.0) + (0.5 + 2.0× 5.0)

×(0.3 + 2.0× 6.0) = 137.25

G3 = (0.1 + 3.0× 4.0) + (0.5 + 3.0× 5.0)

×(0.3 + 3.0× 6.0) = 295.75

G4 = (0.1 + 4.0× 4.0) + (0.5 + 4.0× 5.0)

×(0.3 + 4.0× 6.0) = 514.25.

Accordingly, G’ =

38.75
137.25
295.75
514.25

STEP 3. F is the same as in the example of subsection C

of section II. Accordingly, we obtain

F−1G’ =

1 1 1

2
1
6

1 2 2 4
3

1 3 9
2

9
2

1 4 8 32
3

−1

38.75
137.25
295.75
514.25

 =

0.250
8.50
60.0
0.00

This example gives 0.250 as the decrypted result.

IV. COMPUTATIONAL COMPLEXITY AND SECURITY
STRENGH

Ref. [5] indicated that the computational complexity of its
encryption and decryption is determined by computing F−1

from F . We emphasize that this computational complexity
does not increase as a result of our improvement, because
our improvement only affects the data used in outsourcing
from xi + Hi to xj + Hiλi, which does not increase the
computational complexity.

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

On the other hand, the security becomes stronger because
we no longer face the problems described at the end of the
previous section:

1. In the previous method, if a key Hj is known to the
subcontractor, then xi can be computed from openly available
data xi+Hj by (xi+Hj)−Hj . However, even if Hi is known,
in our improved method, xi cannot be computed because the
hacker must find the secret real number λi to compute xi from
Hj and (xi +Hjλi).

2. In the previous method, even if all of H1,H2, · · · ,Hn

are kept secret, the following important information is not
concealed:

⟨1⟩ Information about which is bigger between any pair of
xi and xj , as a hacker can find xi < xj if (xi + Hj) <
(xj +Hk)
⟨2⟩ Information about xi − xj , as xi − xj is computed by

(xi +Hk)− (xj +Hk)
Our improvement solves the problem of ⟨1⟩ because the

hacker cannot find xi < xj even if (xi + Hkλi) < (xj +
Hkλj) is found by appropriately selecting λ1, λ1, · · · , λn. It
also solves ⟨2⟩ because even if a hacker wants to find the value
of xi − xj from (xi +Hkλi) − (xj +Hkλj) = (xi − xj) +
Hk(λi − λj), he or she must find information about Hk, λi,
and λj , which are secret.

Consequently, our method increases the security over that
of the previous method without increasing the computational
complexity.

V. APPLICATION TO RELIABILITY ENGINEERING

A. Problem of system reliability

Ref. [5] indicated that the method described in section II
is very useful for reliability engineering, because this field
commonly uses long polynomials and important field for
network management.

Fig. 1. Example of reliability block diagram.

An example framework of this sort of engineering is ex-
plained as below.

Suppose we have a reliability block diagram (RBD) repre-
senting the system structure, such as the one illustrated in Fig.
1. If the probability of each component working (component
reliability, denoted by xi) is known, then the probability of
the whole system working (system reliability, denoted by R)
can be computed from RBD, where system is working if
there exists a path between right side end and left side end.
In Fig. 1, the system is working if Components 1 and 2
are working or Components 1 and 3 are working. Therefore,
R = x1x3 + x1x3 − x1x2x3. If R is not sufficiently near 1,
then the system design plan is reconfigured by altering RBD

and R is recomputed. The repetition of this process gives a
reliable design plan at a reasonable cost.

B. Numerical experiment
We wrote software to compute R by using our improved

method. The environment of this software was the same as in
Ref. [5]. The side that receives the outsourced job computed
R by using a factoring algorithm [8]. Below, we describe
numerical results of computing R of the RBD in Fig. 2, where
the component numbers are omitted.

Fig. 2. Reliability block diagram for numerical experiment.

he secret keys are

H1 = 0.396465,H2 = 0.840485,H3 = 0.353336,

H4 = 0.446583,H5 = 0.318693,H6 = 0.886428,

H7 = 0.015583,H8 = 0.584090,H9 = 0.159369,

H10 = 0.38716, and H11 = 0.691004.

The secret real numbers are

λ1 = 0.058859, λ2 = 0.899854, λ3 = 0.163546,

λ4 = 0.159072, λ5 = 0.533065, λ6 = 0.604144,

λ7 = 0.582699, λ8 = 0.269971, λ9 = 0.390478, and
λ10 = 0.293401.

The result of the encryption is R =
0.99969606129548460594, where the runtime of the software
is 0.016 seconds. If we compute R without encryption, then
R = 0.99969606129555621532. For the same reliability block
diagram and same values of xi and Hi, the result computed
using the method in Ref. [5] is 0.99969606129548460594.
Thus, our approach has almost the same accuracy as the
method of Ref. [5]

REFERENCES

[1] C. Gentry, “Full homomorphic encryption using ideal lattices”, 41th
ACM symp. Theory of Computing, pp. 169-178, 2009.

[2] P. N. Smart and F. Vercauteren“Fully homomorphic encryption with
relatively small key and ciphertext sizes”, 10th PKC, 6050, pp. 420-
443, 2010.

[3] C. Gentry and S. Halevi, “Implementing gentry’s full-homomorphic
encryption scheme”, 11th EUROCRYPT, pp. 129-148, 2011.

[4] K. Gai, M. Qiu, Y. Li, and Y. X. Liu, “Advanced fully homomorphic
encryption scheme over real numbers”, 4th CSCloud, pp. 64-69, 2017.

[5] T. Iseki and M. Hayashi, “New secure computation over real numbers
and its application to reliability engineering”, International Workshop
on Security, submitting, 2019.

[6] D. Kalman, “Combinatorial and functional identities in one-parameter
matrices”, The American Mathematical Monthly, 94(1), pp. 21-3, 1987.

[7] J. C. Colbourn, “The combinatorics of network reliability”, Oxford
University of Waterloo, New York, 1987.

[8] B. L. Page and E. J. Perry, “A practical implementation of factoring
theorem for network reliability”, IEEE Trans. Reliability, vol. 37, no, 3,
pp. 259-267, 1988.

© Copyright IEICE – The 20th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2019

