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Abstract—This paper proposes a new method for 

evaluating the reliability of traffic-path-based models 

representing telecommunications networks. The key idea is to 

use the binary decision diagram (BDD) method, which 

memorizes the computational results in the binary expansion 

appearing in the evaluation, so that we can reuse them in 

further steps. While this method is a fast evaluation for other 

models such as graph-based models, no previous work has 

applied it to a traffic-path-based network model. Our 

numerical experimental results show that the BDD method is 

surely faster for large models than the most recently proposed 

existing method.  
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I. INTRODUCTION  

Studies for how to evaluate reliabilities of 

telecommunications networks are categorized in two types. 

One type focuses on ‘graph-based network model’, where 

graph is mathematical concept consisting of nodes and links 

[1]-[3]. The other is ‘traffic-path-based network model’, 

where it does not use graph but use traffic-path expressing 

transmission or logical paths actually used in actual 

telecommunications networks. 

Refs. [4][5][6] emphasized that traffic-path-based 

network model is very useful in reliability design process, 

because it can express the actual mechanisms that cause 

failures in telecommunications networks. 

Nevertheless, this model still faces a problem because 

the execution times of the reliability evaluation algorithms 

[4][6] for this model increase exponentially with the number 

of traffic paths (i.e., the evaluation is an NP-hard problem) 

or only approximation [5]. 

Now, this paper proposes a new approach which is 

more efficient than the previous fastest algorithm [6] for an 

exact evaluation. In our proposal, the traffic-path-based 

network model incorporates the binary decision diagram 

(BDD) method. While this method has been used in the 

reliability engineering field [2][7], it never has been used in 

traffic-path-based network modelling. 

II. PREVIOUS WORK 

A. Preparation 

The special symbols and terms used throughout this 

paper are defined below. 

Pr( ): The probability of the occurrence of an event in ( ) 

:      Empty set 

(S): The power set of S for any finite set S, where (S) is 

the set of all subsets of S ( (S)) 

|S|:     The number of elements of S 

R
+
:     The set of non-negative real numbers 

S1－S2: The elements included in S1 but not included in S2 

       For example, {1, 2, 3} － {2, 3, 4} = 1. 

 ‘iff’ is used to mean ‘if and only if’.  

B. Definition of model 

Let model N be N = (X, Y , C0), where X, Y, , C0 are 

defined as follows. 

 

X: A finite set 

     (This represents the set of physical elements (routers, 

cables, and other equipment) of a 

telecommunication network.) 

Y: A finite set 

     (This represents the set of traffic paths, where a 

traffic path is sequence of physical elements 

through which to convey the traffic of a 

telecommunication network.) 

: A mapping from Y to (X) 

     (For y  Y, (y) is the set of physical elements that 

traffic path y goes through.) 

C0: A mapping from (Y) to R
+
  

     (For A = {y1, y2, … , yn}   (Y), C0(A) represents 

the capacity of traffic ensured when all traffic paths 

in A work.)   

 

Let us describe an example of model N, representing the 

case of Fig. 1. (In the cases of Figs. 1- 4, we assume that 

only cables which are illustrated by lines fail. This is 

assumed for simplicity. We emphasize that model N can be 

applied to cases in which all physical elements can fail.) 

 

Example network: 

  X = {x1, x2, x3, x4, x5, x6, x7, x8}, Y = {y1, y2, y3} 

  (y1) = {x1, x6}, {y2} = {x1, x5, x7, x8}, {y3} = {x3, x4, x7, x8} 

 

In this example, the value of C0( ) is computed under 

the following assumptions. 

 

Assumption I. The capacity of each traffic path is 100.  
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Assumption II. y1 & y2 are used as primary traffic paths. 

Traffic-path y3 is used as a back-up. 

 

 
 

Fig. 1 Example network. 

 

From these assumptions, C0 is determined as follows. 

 

1. If A = then C0(A) = 0, 

2. else if A = {y1} or A = {y2} or A = {y3}, then C0(A) = 

100; 

3. else C0(A) = 200. 

 

Furthermore, we make the assumptions below for model N. 

 

Assumption 1. For any xi  X, xi has two states: up (working) 

and down (failed). 

Assumption 2. The probability of any xi  X being down is 

qi. The probability of xi being up pi ≡ 1 － qi. 

Assumption 3. For any xi  X, and any xj  X, xi and xj 

independently fail. 

Assumption 4. Any yk  Y has two states: up (working) and 

down (failed), where yk is up iff all elements 

of(yk) are working. 

Assumption 5. For any A1  (Y), A2  (Y), if A1  A2, 

then C0(A1) ≤ C0(A2). 

C. Reliability measure 

The reliability measure R(N) for model N rests upon the 

following definitions. 

 

Definition 1: Xg is a subset of X in which: 

                          Every element of Xg is working.  

                          Every element of X － Xg has failed. 

Definition 2: N’s capacity C(N, Xg), which implies the 

capacity ensured by the working traffic paths, 

is C(N,  Xg) = C0({y | y  Y, (y)   Xg}. 

Definition 3: The reliability measure for N is R(N) = Pr(C(N, 

Xg) ≥ ), where  is a specified positive real 

number. 

 

       The failure of an element of X alters the elements of Xg 

by Definition 1. This alteration of Xg changes the value of 

C(N, Xg) according to Definition 2. This mechanism, 

together with Assumption 2, lead to the result that C(N, Xg) 

fluctuates probabilistically. 

       If we assign the value of C(N, Xg) that leads to a 

sufficient customer-satisfaction threshold, then a value of 

Pr(C(N, Xg) ≥ ) near 1 implies high reliability in the sense 

that it stably achieves customer satisfaction. Therefore, R(N) 

= Pr(C(N, Xg) ≥ ) in Definition 3 is reasonable as a 

reliability measure. 

D. Algorithm for reliability evaluation 

Here, we explain the algorithm proposed in ref. [6] 

which is the fastest exact evaluation for R(N).  

 

Reduction 

       In Fig. 1, x2 is not included in any traffic path; therefore, 

failure of x2 never affects reliability. That is, even if we 

delete x2, the value of R(N) does not change (Reduction Rule 

1). Moreover, for x7 and x8, in Fig. 1, the surviving traffic 

paths in the case of x7 failing are the same as in the case of x8 

having failed. Therefore, even if we combine x7 and x8 into 

one physical element whose failure probability is Pr(x7 fails 

or x8 fails), the value of R(N) never changes (Reduction Rule 

2). 

 

Factoring 

We define ‘factoring model N by x’ to mean generating 

model Nx and Nx
D
 from N, where Nx & Nx

D
 are defined 

below. 

 

Nx:  The traffic-path-based network model obtained from N 

by deleting x  X from X, and deleting x from (y) for 

every y  Y. 

Nx
D
: The traffic-path-based network model obtained from N 

by deleting traffic paths included in{y | y  Y , x  (y)}, 

deleting x  X, and deleting x from (y) for every y  Y. 

 

In Nx, x is deleted, but the traffic paths going through x 

are not deleted. Ref. [6] noted that this situation implies that 

x never fails. 

        Fig. 2 shows an example of factoring. The thick bold 

line implies the corresponding element is deleted but the 

traffic path going through this element is not deleted.  

                                  

 
               Fig. 2 Example of factoring. 

 

Ref. [19] derived the following equation. 

 

R(N) = piR(Nx) + qiR(Nx
D
) 

Nx Nx
D
 

x2 
x3 

x4 

x6 

x7 

x8 

y1 

y2 

y3 

x1 

x5 

Primary traffic-path 

Back up traffic-path 
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From it, we can obtain the value of R(N) if R(Nx) and 

R(Nx
D
) are known. R(Nx) and R(Nx

D
) can be obtained by 

factoring again after applying Reduction Rules 1 & 2. 

    

  Ref. [6] proposed an evaluation algorithm combining 

factoring and reductions with emphasizing that their 

proposed algorithm is faster at evaluating R(N) for model N 

than the one in [5]. 

        While the above emphasis, the tree in Fig. 3 grows 

exponentially as the model size becomes larger. Therefore, 

we need a more effective method to evaluate R(N) for large 

N.  

III. PROPOSAL 

Here, we propose a new method for evaluating R(N). 

The key idea is using the BDD method, which is a relatively 

recent approach used for evaluating the reliabilities of other 

models [2][7]. This is the first use of this idea in a traffic-

path-based network model. 

A. BDD algorithm for R(N) for model N 

Fig. 3 is a binary tree expansion expressing the 

repetitions of factoring for N without reduction. These 

repetitions are executed until we need no further factoring (If 

Conditions 1, 2, and 3 in the algorithm of ref. [6] are 

satisfied then we can find no need for further factoring, 

where these conditions are same as BDD(N, ) shown in the 

later part in this section.)  

In this figure, we find that (Nx
3
)x

4

D
, (Nx

3

D
)x

4
, and 

(Nx
3

D
)x

4

D
 are the same models, because the bold line implies 

the deletion of the corresponding element of X, as described 

in the explanation of factoring in Subsection D of Section II.  

Therefore, we do not need to evaluate R((Nx
3

D
)x

4
) and 

R((Nx
3

D
)x

4

D
) if we have already evaluated R((Nx

3
)x

4

D
) in this 

binary tree and memorized the result. That is, Fig. 3 can be 

simplified to Fig. 4.  

The improved algorithm using the above idea for R(N) is 

shown below, where Q is the set of two-dimensional vectors 

(Q1, Q2) in which Q1 expresses the model appearing in the 

binary tree and Q2 expresses the value of R(Q1). Before 

starting the improved algorithm, Q is set to (, ). Bold 

letters in the improved algorithm below indicate the primary 

differences from ref. [6].  

 

BDD(N, ) 

       Input N,  

       Output R(N) 

Step 1. End BDD( ) after outputting the value of R(N) if N is 

found to be equivalent to either model in the first 

column of vector in Q, where R(N) is obtained from 

the second column.  

Step 2. If N satisfies any of the following conditions; 

Condition 1.Y includes a single traffic path (denoted 

by y).   

Condition 2.  C(N, (Y)) < 
 

 

 
Fig. 3 A binary tree for factorings. 

 

 

 

 
 

Fig. 4  BDD for N. 
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                  Condition 3. C0(0) ≥  if A0 is the set of traffic 

paths that are empty sets.  

then end BDD( ) after outputting the value of R(N) as 

follows, while storing (N, R(N)) in Q. 

              If Condition 1 is true and C0({y}) ≥ , then R(N) is 

the probability of all elements in (y) working. 

    If Condition 1 is true and C0(y) <, then R(N) = 0. 

    If Condition 2 is true, then R(N) = 0. 

    If Condition 3 is true, then R(N) = 1. 

Step 3. Select an element of X, denoted by xi, and execute 

BDD(N, ) = piBDD(Nx, ) + qiBDD(Nx, ). 

              Add (N, BDD(N, )) to Q.  

IV. NUMERICAL EXPERIMENTS 

A. Preparation 

A graph is defined as a set of nodes and links, where 

link connects a pair of nodes. Suppose that a link e connects 

a pair of nodes i & j; then we write e = (i, j). We call i & j 

the end nodes of link e. The path between two nodes i1 & im 

is defined to be an alternating sequence of nodes and links: 

i1 - (i1, i2) - i2 – (i2, i3) - … - (im-1, im) - im. Suppose a path 

includes L links. Then L is called the length of this path.  

If every pair of nodes (a, b) of a graph has a single link 

whose end nodes are a & b, then the graph is called 

complete. If a complete graph has n nodes, it is called an n-

complete graph. For example, a 5-complete graph is 

illustrated in Fig. 5. 

 
 

Fig. 5 A 5-complete graph. 

B. Tarrgets of the evaluation 

In our numerical experiment, X is the set of nodes and 

links of complete graphs, where we assume that both nodes 

and links can fail with the same probability, qi = 0.00001.  

We dare to select such small value for qi because its 

computation becomes difficult if we input such small value. 

That is, if we have no problem for such small value in our 

numerical experiment then other bigger values will also 

show no problem. 

We focus on complete graphs because they will show 

the worst case computation results compared with other 

graphs. If we can find reasonably effective computation 

speed for them then reliabilities of other graphs can be 

computed with more reasonable computation times.  

Traffic paths are selected from paths between nodes s 

& t so that their lengths should be less than 4. The length ‘4’ 

is selected because if it includes paths with long lengths 

then the model becomes near to graph models.  

C0( ) is defined as the number of working traffic paths. 

The threshold value  is defined to be the half the number 

of traffic paths. 

C. Environment 

The environment for our experiments was as follows. 

Software language: C#   OS: Windows 7 Professional 64bit 

CPU: Intel®Core™i7-3770   Memory size: 4.00Gb 

D. Evaluation results 

Table 1 shows the results of the evaluation. 

 

Table 1. Evaluation results 
 

n 
Evaluation time by 

ref. [6] 
Evaluation time  

by BDD( ) 
 

R(N) 

6 0.017 0.029 0.99998000 

7 0.123 0.064 0.99998000 

8 3.966 0.288 0.99998009 

9 124.948 1.975 0.99998008 

10 69531.692 11.578 0.99998007 

 

For n = 6, the previously proposed method is slightly 

faster than our method. This is because searching for the 

same models in BDD for N needs extra computations. 

However, our method becomes dramatically faster than the 

previously proposed one as n becomes bigger. 

That is, our method is surely faster than the previously 

proposed one when there are many physical elements and 

traffic paths. 

V. CONCLUSION 

This paper proposed a new approach for evaluating the 

reliability of traffic-path-based network models. This 

approach is based on the binary decision diagram method. 

The numerical experimental results show that our 

proposal is faster than the existing method at evaluating the 

reliability of large traffic-path-based models.  
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