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Abstract—The recent build-up network of Automatic Identi-
fication System (AIS) equipped on vessels provides a rich source
of vessel movement information. AIS is originally designed for
automatically exchanging navigation information, such as their
unique identification, position, course, and speed, with nearby
vessels and terrestrial receivers to affect collision avoidance
and safety control. The collected sequences of AIS logs can
be considered as maritime trajectory data, i.e., the sequences
of location points with timestamps. This vast amount of AIS
trajectory data can be collected and employed to achieve an
awareness of maritime traffic knowledge.

This paper is devoted to discovery of maritime traffic route
from trajectory data generated by AIS networks. However, AIS
trajectory data discovery is a challenging task because of the
trajectory data is available with uncertainty. Furthermore, unlike
the vehicles’ movements are constrained by road networks, there
is no such a sea route for vessels to follow in marine areas. To over-
come the challenges, we propose a framework of Maritime Traffic
Route Discovery (abbreviated as MTRD) to generate pattern-
aware routes to achieve an effective understanding of maritime
traffic awareness. The proposed framework is evaluated on real
AIS data and the experimental results shows that the proposed
MTRD is able to extract the marine traffic route effectively
and provides a cornerstone of maritime traffic knowledge for
traffic management, anomaly detection, and conflict analysis in
the future.

Keywords—Maritime Traffic knowledge, AIS System, Trajectory
data, Trajectory pattern mining, Traffic Route Discovery

I. INTRODUCTION

Recently, the pervasiveness of Automatic Identification
Systems (AIS) has made a large number of the vessels’
movement data to be available. In order to affect collision
avoidance and safety control, vessels equipped with AIS
automatically exchange navigation information, such as their
unique identification, position, course, and speed, with nearby
vessels and terrestrial receivers of AIS networks to facilitate
the tracking and monitoring of vessel location and movement.
The collected sequences of AIS logs form maritime trajectory
data, i.e., the sequences of location points with timestamps.
Due to the trajectory data records vessels’ real movements,
AIS data is a valuable data source and gives opportunity
used for discovering the traffic knowledge from historical AIS
trajectories. Accordingly, there is an ever-increasing interest
in performing data analysis over AIS data and develop many
applications for maritime traffic management [8], [2], [1],

anomaly detection [10], [6], and collision risk analysis [13],
[12], [18].

In this work, we focus on the problem of discovering the
maritime traffic routes from historical trajectories generated by
AIS network. However, discovering the maritime traffic routes
from AIS trajectories is a non-trivial problem. As numerous
researches in the literature have addressed [3], [5], [14], the
trajectory data is available with uncertainty. The same situation
occurred in trajectory data generated by AIS network. The
uncertainty of AIS trajectories would be caused by location
sensing techniques and sampling. AIS uses Global Positioning
System (GPS) in conjunction with shipboard sensors and
digital VHF radio communication equipment to automatically
exchange navigation information electronically. The location
information of AIS data may be generated with inaccurate
GPS measurement or the data may be incomplete caused by
radio signal attenuation and loss. Additionally, the transmitters
of AIS broadcast data every 2 to 10 seconds depending on
a vessel’s speed while underway, and every 3 minutes while
vessels are at anchor. The irregular and asynchronous sampling
would lead to that a vessel’s movement may not exactly repeat
the same trajectory even if the vessel has similar movement
behavior to others.

Moreover, discovering the traffic knowledge from maritime
trajectory is made even more difficult due to the maritime
area is a free moving space. Unlike the vehicles’ movements
which are constrained by road networks [14], [16], there is
no sea route for vessels to follow in maritime areas. Fig. 1
shows a set of AIS trajectories collected from a maritime area.
Obviously, the vessels are moving free and AIS trajectory data
is more complex than the trajectories moving along the road
network as shown in Fig. 2. Extracting movement behavioral
knowledge from uncertain AIS trajectories is a challenging
task. Thus, for providing an effective overview of maritime
traffic knowledge, we aim to achieve the discovery of common
movement behaviors from AIS data and identify the maritime
traffic routes.

There are numerous researches that have made efforts to
discover movement behavior from trajectory data [3], [5], [17],
[4], [7], [14], [16]. However, most of them focus on discover-
ing movement pattern from the trajectory data constrained by
road networks. The authors in [5], [7] proposed a partition-
and-group framework to detect the trajectory clusters from
the hurricane data set and the animal movement data set. The
framework generates a representative trajectory of each cluster.
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Fig. 1. AIS trajectory data in mar-
itime area

Fig. 2. Taxi trajectory data in road
network

Although, in [9], [1], the authors proposed methodology called
TREAD automatically learns a synthetic representation of
maritime traffic patterns from AIS data. The extracted traffic
route is represented in a synthetic route composed of the nodes
and segments. Both of them discover the typical movement
pattern and exhibited in a compact representation. They did
not provide the detail movement route for moving objects and
marine vessels.

The purpose of this work is to discover the maritime traffic
routes from the trajectory data collected by AIS network.
More specifically, we not only discover the trajectory pattern
but also extract the movement area of traffic route from
those discovered trajectory patterns. We propose a framework
of Maritime Traffic Route Discovery(abbreviated as MTRD)
to generate pattern-aware routes and achieve a effective un-
derstanding of maritime traffic awareness. We leverage the
knowledge of movement pattern discovered from a given set
of AIS trajectories to generate the traffic routes. The extracted
knowledge of maritime traffic routes is able to contribute to
many applications such as employing the analysis of route
flow and density for maritime traffic management, supporting
situation awareness in maritime surveillance, and constructing
a normal model of vessel movement behaviors for anomaly
detection.

The remainder of the paper is organized as follows. The
proposed framework is generally introduced in Section II.
Section III technically details the main modules of the pro-
posed framework. In Section IV, we perform an empirical
performance evaluation on real data set collected from AIS
network. Finally, we summarize our conclusion and future
work in Section V.

II. FRAMEWORK OVERVIEW

Given a set of data collected from AIS network, the
proposed framework of Maritime Traffic Route Discovery
(abbreviated as MTRD) automatically discovers the movement
patterns from AIS data in an unsupervised way and then the
maritime traffic routes are extracted from the discovered pat-
terns. Figure 3 outlines the functional architecture of MTRD,
which comprises of three modules: AIS Pattern Mining, Pattern
Summarization, and Traffic Route Generation.

Unlike the traditional maritime surveillance sensors, such
as radar or GPS, the AIS system comprehensively represents
the identity and properties of a vessel, as well as its behavior.
In other words, AIS is able to facilitate the tracking and
monitoring of vessel location and movement. Each vessel

Fig. 3. Framework of maritime traffic routes discovery

tracked by AIS is characterized by the properties, including the
vessel’s static parameters(e.g. name, flag, type), and the current
state of its dynamic behavior(e.g. speed, course, location).
Based on the vessels’ dynamic behavior records originated
by the AIS network, the collected sequences of AIS logs
can be considered as AIS trajectory data. Each trajectory is
represented by a sequence of spatial-temporal points, Ti =
{(x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn)}, where n is the total
number of points.

Based on AIS trajectory data, the objective of AIS Pattern
Mining module is to discover the trajectories with similar
movement behavior in form of AIS trajectory pattern. To
overcome the problem of uncertainty and moving free within
AIS trajectory data, the concept of frequent region is adopted.
We use a frequent region to represent a specific location and
transform the a point-based trajectory into a sequence of fre-
quent region. The problem of discovering similar trajectories
can be processed as a problem of sequential pattern mining.
Thus, a AIS pattern is represented as a frequent sequential
pattern(FSP).

Additionally, the huge number of FSPs may be generated
by the frequent pattern mining process. The unwieldy number
of frequent patterns makes the patterns themselves difficult to
explore. The Pattern Summarization module is developed to
summarize the large number of generated patterns using the
representative patterns, called summarized pattern.

Finally, the Traffic Route Generation module provides a
solution to extract traffic routes from each summarized pattern,
i.e., to generate the pattern-aware routes. More specifically, the
task of the module is to detect a movement channel of a traffic
route followed by a group of AIS trajectories those having
similar behavior within a summarized pattern.

III. MARITIME TRAFFIC ROUTE DISCOVERY

In this section, we technically detail the three main modules
of the proposed framework MTRD: AIS Pattern Mining,
Pattern Summarization, and Traffic Route Generation.

A. AIS Pattern Mining

To deal with the problem of uncertainty and moving free
space within AIS trajectory data, the AIS pattern mining



module is developed based on the approach of trajectory data
mining to explore the vessels’ movement behavior from AIS
data. Without loss of generality, given a set of trajectories,
algorithms of mining movement behaviors will first extract
some regions with a certainty degree of popularity, which are
referred to as frequent regions. Then, original trajectories are
transformed as sequences of frequent regions. With a given
sequences of frequent regions, movement behaviors are thus
defined as trajectory patterns that frequently appear among
sequences of frequent regions. Clearly, trajectory patterns
imply that objects usually follow similar movement behaviors.

Thus, the AIS pattern mining module includes three steps:
frequent region detection, data transformation, and sequential
pattern mining. First, in frequent region detection, the AIS
trajectory data is mapped into grid system, and then a cell is
detected as a frequent region rj if the number of trajectories
passed the cell has satisfied the user-defined minimum support
threshold MinTs. More clearly, a frequent region is a grid cell
that contains at least MinTs number of trajectory segments
passing by the grid cell. Second, the problem of discovering
similar trajectories can be processed as a problem of sequential
pattern mining by data transformation. Based on the discovered
frequent regions, each AIS trajectory is transformed into the
region-based trajectory with corresponding frequent regions,
i.e., a sequence of frequent region. Note that the points those
are not in frequent regions will be regarded as noise. As
such, the movement behaviors can be captured by the mobility
relations between frequent regions. Finally, the AIS pattern
mining is able to realized by the method of sequential pattern
mining. In this work, Prefixspan algorithm [11] is applied to
mine the frequent sequential patterns(abbreviated as FSPs).

B. Pattern Summarization

After the procedure of AIS pattern mining, the huge num-
ber of FSPs can be produced by the frequent pattern mining
process. However, the unwieldy number of discovered frequent
sequential patterns makes the understanding of generated pat-
terns troublesome. Thus, the pattern summarization module
is developed to summarize the large number of generated
patterns by using the representative patterns, called summa-
rized patterns(abbreviated as SPs). This module includes two
steps: SuperFSP Generation and Pattern Concatenation. The
proposed two steps of pattern summarization are developed
based on two observations on generated FSPs from AIS
trajectory data.

First, we observe that some generated patterns are con-
tained in other super patterns. For example, given three FSPs
as FSP1 = {r1, r2, r3, r4, r5}, FSP2 = {r1, r3, r5}, and
FSP2 = {r1, r3, r9}, FSP1 is considered as the SuperFSP
of FSP2 due to the elements of FSP2 could be located
with ordered in FSP1. Intuitively, FSP1 is not the SuperFSP
of FSP3. In order to promises that each SuperFSP is a
unique FSP, The proposed method of SuperFSP generation
use the approach for solving the longest common subsequence
problem to prune the FSPs those are not super.

Second, Pattern Concatenation is proposed to solve the
problem of data uncertainty and incompleteness occurred in
AIS trajectory data. The uncertainty and incompleteness in
AIS data may cause the incompleteness of generated pat-
terns. By observation, some generated patterns are SuperFSP

but have partially similarity with others. For example, given
two FSPs as FSP1 = {r1, r2, r3, r4, r5} and FSP2 =
{r3, r4, r5, r6, r7, r8, r9}. Compared the last three elements
of FSP1 and first three elements of FSP2, the similar
subsequence is {r3, r4, r5}. FSP1 and FSP2 are supposed
to have the sequential relations in movement behavior. Those
two FSPs are able to be concatenated as the summarized
pattern {r1, r2, r3, r4, r5, r6, r7, r8, r9}. However, the gener-
ated patterns is not perfect in real world. If the length of
the subsequence comparison is fixed, such pattern concate-
nation based on last-and-first similarity may fail in many
cases. For instance, FSP1 and FSP2 are compared by the
subsequence length of 2, i.e., FSP1.last(2) = {r4, r5} and
FSP2.first(2) = {r3, r4}. They may not be considered as a
set of patterns those have the sequential relations in movement
behavior. To realize the idea, we propose a last-and-first pattern
concatenation and develop a last-and-first similarity (LAF)
to be the measurement for pattern concatenation. Given two
sequential patterns sp1 and sp2, the last-and-first similarity
(LAF) based on the compared length ℓ is defined as follows:

LAF =
|LCS(sp1, sp2)|

ℓ
, (1)

where |LCS(sp1, sp2)| is the length of longest common sub-
sequence in sp1 and sp2. For effectively pattern concatena-
tion, last-and-first pattern concatenation method dynamically
measures the last-and-first similarity and merge the generated
patterns those have the max similarity in sequential relations.
For example, we evaluate the last-and-first similarity between
FSP1 and FSP2 by LAF with ℓ from 2 to 4. Then, we
obtain LAF(ℓ=2)=1/2, LAF(ℓ = 3)=1, and LAF(ℓ = 4)=3/4.
Therefore, FSP1 and FSP2 is able to concatenated at the
length 3 within the max similarity in last-and-first sequential
relations.

The algorithm of pattern summarization is detailed in Algo-
rithm 1. Given a set of AIS patterns (DAP ) mined from a set of
AIS trajectory data. The algorithm outputs a set of summarized
patterns (DSP ) according to user-defined minimum last-and-
first similarity LAFmin. The algorithm includes two steps:
SuperFSP Generation and Pattern Concatenation. First, in the
step of SuperFSP Generation (line 1 to line 8), the APs those
enclosed by other patterns are pruned from DAP . Thus, we can
promise that each AIS pattern remained in DAP is a unique. In
other words, the AIS patterns in DAP.SuperFSP are SuperF-
SPs(line 8). Then, in the step of Pattern Concatenation (line 9
to line 16), we evaluate the last-and-first sequential relations
for each pair of APi and APj in DAP.SuperFSP . Specifically,
the last-and-first similarity (LAF) are compared by dynamic
length for effectively evaluation. The max range of compared
length is bounded by ℓmax == |min(APi, APj))| /2 and
minimum compared length is required 2. The pair of patterns in
DAP.SuperFSP are concatenated if LAF of the pair is satisfied
the minimum requirement LAFmin. That is those patterns have
the last-and-first sequential relations in movement behavior.
Finally, the unwieldy number of discovered AIS patterns can
be summarized as a representative set of summarized patterns.

C. Traffic Route Generation

Given a summarized pattern, the Traffic Route Generation
module extracts a possible traffic route hidden in the summa-
rized pattern. That is, the proposed traffic route is a pattern-



aware route. As the the result of early procedure proposed, a
summarized pattern is a sequence of frequent regions followed
by many historical AIS trajectories. The idea for pattern-aware
route generation is performing statistical analysis on those
trajectories within each region of the pattern sequentially. The
approach of region-based mobility analysis in our previous
work [15] is adopted to materialize the pattern-aware route
generation. The movement behavior of a region is extracted
from AIS trajectory and represented by a mobility vector.
Then, a maritime traffic route can be generated and represented
by a sequence of ordered mobility vectors. As shown in Fig 4,
the mobility vector Vm(rj) = {D,Sc} is represented by
major direction D and crossing-section Sc in a spatial region.
The major direction summarizes the movement direction of
majority trajectories in the region. The crossing-section defines
the spatial borders in the region while the most of trajectories
crossed the region. For a region rj , we extract a set of velocity
vectors from each pair of conjunctive trajectory points those
exist in the region. Major direction D is computed by the
average of the velocity vectors in the region and then all points
are projected on the line perpendicular to major direction.
Then, based on the projected points, we derive the crossing-
section Sc =(center, left-margin, right-margin) by statistical
analysis. The center point is the average of the projected points.
In order to provide a movement channel of a traffic route
within which most of trajectories moving along, we define
the route margin, i.e., left-margin and right-margin, on each
side of mobility vector and remove the outlier. According to
empirical rule in statistics, about 95 percent of data are within
two standard deviations if a data distribution is approximately
normal distribution. Thus, left-margin and right-margin are
derived at the distance of two standard deviations away from
center point. Sequentially, the traffic route is generated in terms
of an ordered sequence of Vm(rj) discovered from a set of
trajectory within a summarized pattern.

Figure 5 is a running example for maritime traffic route
generation. Given a summarized pattern, velocity vectors are
extracted from trajectories within the pattern as shown in
Fig. 5(a) and (b). In Fig. 5(c), based on the velocity vectors,

Fig. 4. An example of mobility vector

the traffic route generation module explores the major direction
and then retrieves the projected location points on the line
perpendicular to major direction. The crossing-section, in
terms of the center and both side margins, are computed as
red point and green points in Fig. 5(d) according to statistical
analysis on projected points. As the result shown in Fig. 5(e),
the traffic route is discovered and represented by a sequence
of mobility vectors.

(a)(b)(c)

(d) (e)

Fig. 5. An running example of maritime traffic route generation

IV. EXPERIMENTS

The experiments are conducted on a real AIS dataset
collected from the AIS network system. The system collects
AIS data broadcast by vessels equipped with AIS, including the
vessels’ unique identification, geo-location, course, speed, and
timestamps. An temporal ordered sequence of AIS data can
be considered as a AIS trajectory. We extracted a set of AIS
trajectory data in a maritime area of 100Km×100Km for five
months. The dataset includes 20639 trajectories and 21202212
spatial-temporal points. The proposed framework of Maritime
Traffic Route Discovery(abbreviated as MTRD) comprises of
three modules: AIS Pattern Mining, Pattern Summarization,
and Traffic Route Generation. We first conduct the experiments
on the effect of discovery parameter in AIS Pattern Mining and
Pattern Summarization. Then, the effectiveness evaluation on
the generated traffic route is performed to show the proposed
MTRD is able to achive an effective understanding of mar-
itime traffic route. In order to detect the frequent region, we
partitioned the area into 5Km×5Km grid-cell size and MinTs
is set to be 300 for the frequent region determination.



A. Effect of Discovery Parameters

Based on the collected AIS trajectories in terms of se-
quences of frequent regions, we discover the AIS trajectory
pattern by the frequent sequential pattern mining. We first
evaluate the effects of various MinSup on frequent sequential
pattern mining. MinSup is a user-defined minimum support
threshold for determining a sequence to be a frequent sequen-
tial pattern (FSP) in Prefixspan algorithm [11]. Figure 6 shows
the results of FSP mining while MinSup is varied from 200
to 400 by Prefixspan algorithm. Meanwhile, the number of
SuperFSP generation for pattern summarization is also shown
in Fig 6. As can be seen, the experimental results show
that the number of FSP and SuperFSP decreased as MinSup
increased. Notice that, the proposed SuperFSP pruning method
can effectively reduce the number of patterns.

Fig. 6. Effect of MinSup for FSP mining and SuperFSP generation

To evaluate the effectiveness of the proposed SuperFSP
pruning, we use the data compression ratio to measure the
effectiveness of the proposed method. Data compression ratio
is defined as the ratio between the uncompressed size and
compressed size and the measure is defined as

Data compression ratio =
UncompressedSize

CompressedSize
, (2)

As shown in Fig. 7, the experimental result shows that the
proposed SuperFSP pruning can give high compression ratio.

Moreover, we measure the space savings of data for storage
size evaluation on SuperFSP pruning. The data space savings
is defined as the reduction in size relative to the uncompressed
size and the measure is defined as

Data space savings = 1− CompressedSize

UncompressedSize
, (3)

We vary the value of MinSup from 200 to 400 and plot the
data space savings after SuperFSP pruning in Fig. 8. The data
space savings can be achived over 90 %.

Figure 9 shows the number of summarized pattern gener-
ated as the LAFmin similarity is varied. LAFmin is minimum
last-and-first similarity, which is the measurement for pattern
concatenation. The result of Fig. 9is exactly what we expect.
After the SuperFSP pruning, each FSP should be unique while
LAFmin = 1. In other words, the number of patterns do not
reduce as LAFmin = 1. While LAF decreases, the number
of patterns decreases due to the pattern concatenation. The

experimental result implies that the patterns those have the
sequential relations in movement behavior can be concatenated
by the proposed last-and-first pattern concatenation method.

Fig. 7. Data compression evaluation by SuperFSP pruning method

Fig. 8. Space savings evaluation by SuperFSP pruning method

Fig. 9. Effect of LAF similarity on traffic pattern generation

B. Effectiveness Evaluation

In the proposed MTRD, the final objective is to discover
the maritime traffic route from trajectory data generated by
AIS networks. Thus, we conduct the effectiveness evaluation
on traffic route generation. The effectiveness of the proposed
MTRD is evaluated by average coverage rate. Given a dis-
covered traffic route, i.e., a pattern-aware route, the average



coverage rate of the traffic route discovered from the AIS data
is measured by

Average Coverage Rate =

∑n
k=1

Pc(rk)
P (rk)

n
, (4)

where Pc(rk) is the number of points contained in the route
area contained of the region rk, P (rk) is the total number
of points contained in the region rk, and n is the length of
region-sequence in the traffic route.

As shown in Fig. 10, the average coverage rate is up to 76%
while MinSup is varied from 200 to 400. The result indicates
that the proposed MTRD is able to discover the maritime traffic
route from AIS trajectory data effectively.

Fig. 10. Effectiveness evaluation of traffic route generation

V. CONCLUSION AND FUTURE WORK

This work presents a framework of Maritime Traffic Route
Discovery (abbreviated as MTRD) to discovers the maritime
traffic route from AIS trajectory data generated by AIS
network. We leverage the knowledge of movement pattern
discovered from a given set of AIS trajectories to generate
the traffic routes. To overcome the problem of data uncer-
tainty and free moving marine space, MTRD includes three
modules. AIS Pattern Mining module discovers the trajectory
patterns from AIS data in an unsupervised way and then
the discovered patterns are summarized by SuperFSP pruning
and pattern concatenation in Pattern Summarization module.
Finally, the maritime traffic routes are extracted from the
discovered patterns by statistical approach using in traffic route
generation module. More specifically, a discovered traffic route
is represented in form of a movement channel followed by
a group of AIS trajectories those having similar behavior
within a summarized pattern. The proposed MTRD not only
discovers the trajectory pattern but also extracts the movement
area of traffic route from those discovered trajectory patterns.
Obviously, MTRD provides a better awareness of maritime
traffic route discovered from AIS trajectory data. Based on
real AIS data, the experimental results show that the proposed
MTRD is able to effectively discover the traffic routes from
AIS trajectories. In the future, this work will be applied as a
cornerstone for researching the problem of traffic management,
anomaly detection, and conflict detection in the maritime
domain.
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