Proceedings of APCC2008 copyright © 2008 IEICE 08 SB 0083

Fast Link-Disjoint Path Algorithm on Parallel
Reconfigurable Processor DAPDNA-2

Taku KIHARA, Sho SHIMIZU,

Yutaka ARAKAWA, Naoaki YAMANAKA, Kosuke SHIBA
Department of Information and Computer Science, Faculty of Science and Technology,
Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
Email: kihara@yamanaka.ics.keio.ac.jp

Abstract—This paper proposes fast parallel link-disjoint
path algorithm using dynamically reconfigurable processor
and implements it on DAPDNA-2 (IPFlex Inc) which is newly
structured. The conventional k-shortest path algorithm finds
multiple link-disjoint paths between the source node and the
destination node. When the network scale is large, the cal-
culation time of k-shortest path algorithm increases rapidly.
Moreover, in the worst case, k-shortest path algorithm can not
find optimum link-disjoint path pair because this algorithm
always finds the shortest path at first and removes those
links from network. Our proposed algorithm collects all path
information in the network and calculates optimum link-
disjoint path pair (i.e. minimum cost link-disjoint path pair)
at high speed by using parallel operation. Additionally, our
proposed algorithm finds optimum link-disjoint path pair at
a high rate in a limited of calculation time. The evaluation
shows our proposed algorithm can decrease the calculation
clock about 90%.

I. INTRODUCTION

In recent year, high-reliable network is emphasized
and networks focused on QoS such as next generation
network (NGN) attract a lot of attention. There are various
technologies that guarantee QoS, and survivability is one
of them. In non-survivability network, the interruption
which happened by change of network topology or link-
down due to disaster causes fatal data loss. Therefore, it
becomes an important issue to prepare a backup path for
survivability in short time.

A backup path should have the constraint that it can’t
use the same link as the primary path uses. These path
pair which doesn’t uses the same link is called the link-
disjoint path pair. K-shortest path algorithm [1] was widely
used to calculate a link-disjoint path pair. However, k-
shortest path algorithm is not suitable for a large-scale net-
work because it is based on Dijkstra’s algorithm [5]. The
computation complexity of Dijkstra’s algorithm is O(N?)
where the number of nodes is N. So the computational
complexity of k-shortest path algorithm rapidly increases
as the number of nodes increases [2], [3]. Moreover, the
k-shortest path algorithm doesn’t always obtain optimum
link-disjoint paths [4]. Therefore, k-shortest path algorithm
is unsuitable for a large-scale network.

In this paper, we propose a high-speed parallel link-
disjoint path search algorithm called “Fast Link-disjoint
Path Algorithm (FLDPA)” using dynamically reconfig-
urable processor and implements it on DAPDNA-2 [7]
developed by IPFlex Inc [6]. FLDPA collects all path in-
formation which include cost and link information at high
speed by simultaneous multiple path search. Then FLDPA

calculates optimum link-disjoint path among them. Addi-
tionaly, our proposed algorithm collects path information
in ascending order of cost, so the probabilty that the
algorithm finds optimum link-disjoint path pair is very
high even if the calculation time is limited.

The rest of this paper is organized as follows. In section
II, we introduce k-shortest path algorithm, and explain
its problem. In section III we describe the details of
FLDPA. Following section IV, we evaluate and compare
the calculation clocks of k-shortest path algorithm and
FLDPA. The conclusions are summerized in section V.

II. k-SHORTEST PATH ALGORITHM

K-shortest path algorithm is widely used in network.
It finds k link-disjoint paths with k-times executions of
Dijkstra’s algorithm. The outline of the algorithm are
shown below.

Stepl) Calculate the shortest path between the source
node and the destination node with the Dijkstra’s
Algorithm.

Step2) Remove all links which belong to step 1 from
the network.

Step3) Repeat step 1 and step 2 k-times, and then k link-
disjoint paths are found. If we can’t execute the
Dijkstra’s algorithm due to removal the links, the
algorithm is finished.

Figure 1 shows the example of k-shortest path algo-
rithm. The source node is node A and the destination
node is node F. First, the algorithm execute the Dijkstra’s
algorithm, and it find the shortest path between node A
and node F. As a result, the path A-B-C-D-F, whose cost
is 5 is found. Next, link AB, link BC, link CD, link DF
are removed from the network shown in Figure 1. After
the removal of links, the Dijkstra’s algorithm is executed
again. The Ist link-disjoint path A-E-F is found. Link
AE, link EF are removed again from the network. The
k-shortest path algorithm repeats above operation until it
finds the kth link-disjoint path. However in this example, it
becomes impossible to find 2nd link-disjoint path because
all links connected to node A were removed and then the
algorithm is finshed.

In this example, we find a link-disjoint path pair in
the network. One is A-B-C-D-F and the other is A-E-F.
Thus, k-shortest path algorithm finds k link-disjoint paths,
with k-time executions of Dijkstra’s algorithm. However,
the k-shortest path algorithm is inefficient because the

Proceedings of APCC2008 copyright © 2008 IEICE 08 SB 0083

[A-B-CDF Costs |

Fig. 1. k-shortest path algorithm based on Dijkstra’s algorithm
Pair 1 Pair 2

— | A-B-C-D-F Cost5 —— | A-B-C-F Cost6

-=- A-E-F Cost 11 ===| A-E-D-F Cost6

Fig. 2. Case of failure to find link-disjoint path in k-shortest path
algorithm the optimum solution. Pair 1 shows the solution of k-shortest
path algorithm and Pair 2 shows optimum solution.

calculation time of Dijkstra’s algorithm increases as the
value of k or the number of nodes increases. Moreover,
in Figure 2, better link-disjoint path pair exists, which is
lower cost than the pair of example such as A-B-C-F and
A-E-D-F. The k-shortest path algorithm never finds this
link-disjoint path pair, since it always finds shortest path
at first and these links are removed from the network.

III. FLDPA
A. Overview

FLDPA consists of two phases, the candidate path col-
lection phase and the path selection phase. In the candidate
path collection phase, FLDPA collects multiple candidate
path information which include the link information and
the path-cost information at high speed by simultaneous
multi-path search. Following the path selection phase,
using the path information which collected at the candidate

Candidate Path
Collection Phase
If All Candidate
N are Collected
Proceeding |_, | Recording |_ | Candidate
Search Position Link Info Register
x | Path Selection
Repeat Phase

Fig. 3. FLDPA consists of two phases, the candidate path collection
phase and the path selection phase.

path collection phase, the optimum link-disjoint paths is
calculated. Figure 3 shows the flow chart of FLDPA.

B. Candidate path collection phase

The main idea of this phase is a simultaneous multiple
path search from the source node to the destination node.
The pace that the algorithm proceeds a current search
position toward all connected links is equal to one cost,
and every step after proceeding, search results are recorded
as path information. After a while, all path information
are collected at the destination node, and registered as
a candidate path. Here the path information includes
the total link cost and which links are used. The path
information pl1(AB-BC, 10) means the path passed link
AB, BC and its cost was 10.

Figure 4 shows an example of action in the candidate
path collection phase. The source node is node A and the
destination node is node D. The algorithm collects path
information between the source node and the destination
node. First, there is two path information p1(AB, 1) and
p2(nothing , 1) after proceeding operation. Link informa-
tion of p2 is "nothing”, since p2 still have not passed the
link AC. Next, the current search position is proceeded one
cost, and the three path information pl(AB, 2), p2(AC,
2), p3(AB, 2), exists. pl and p3 seem to the same result,
but in fact they are different. pl is on link BD and will
make for node D, on the other hands, p3 is on link BC
and will make for node C. The current search position is
proceeded one cost as well as previous step, there are five
path information pl1(AB-BD, 3), p2(AC-CE, 3), p3(AB-
BC, 3), pA(AC, 3), p5(AC, 3). At this time, pl have
reached the destination, and p1 is registered as a candidate
path c1(AB-BD, 3). Finally, six candidate paths c1(AB-BD,
3), c2(AC-CE-ED, 5), c3(AC-CB-BD, 6), c4(AB-BC-CE-
ED, 6), ¢5(AC-CD, 7), c6(AB-BC-CD, 8) are collected.
Note that the candidate paths are sorted in ascending order
of cost because the pace of proceeding is “one cost”. This
characteristic is important for implementation described in
section III-D.

In this way, the algorithm repeats the parallel proceeding
operation and records multiple path information until all
path information are collected.

C. Path selection phase

In the path selection phase, FLDPA calculates the opti-
mum link-disjoint paths from the candidate paths collected
at the candidate path collection phase. The algorithm
calculates all link-disjoint path pairs among all candidate

Proceedings of APCC2008 copyright © 2008 IEICE 08 SB 0083

P2AC,2) |

p3(AB-BC-CD, 8) — ¢6
2

p3(ABBC,3) 1 P2(AC-CE, 3) 1

Fig. 4. Multiple path information is collected and recorded in the
candidate path collection phase.

AR BC D -« | CF Cost
Path1 1 0 0 0 01
Duplicate
At Each Node

AR RC cD - CF Cost

— Path 1 1 0 0 0 01
AR BC CD CF Cost

L— Path2 1 0 0 0 01

Fig. 5. The bitmap is duplicated when the current search position
reached at the node.

paths from passed link information included in the can-
didate path information. Then, the algorithm compares
their cost and chooses optimum link-disjoint path pair.
We explain the concrete procedure in this phase at the
following example.

The network topology in this example is shown in
Figure 4. Six candidate paths, cl, c2, ..., c6 exist in this
network (See III-B). First, the algorithm checks weather
the pair [cl, ¢2] is link-disjoint or not. cl passes Link AB,
BD and ¢2 passes link AC, CE, ED. So the pair [c], c2]
is link-disjoint because neither cl nor ¢2 passes the same
link. Next, the algorithm checks the pair [c1, ¢3]. The pair
[c1, 3] is not link-disjoint, since ¢3 passes link AC, CB,
BD and link BD is common link for both candidates. Thus,
the algorithm checks all candidate pairs in turn whether
link-disjoint or not. As a result, four pairs [c1, c2], [c], ¢5],
[c2,c6], [c4,c5] are selected. Finally, the minimum-cost
pair [cl,c2] is selected among them.

FLDPA can always calculate optimum link-disjoint path
pair because FLDPA can list all link-disjoint path pairs.

D. Implimentation on DAPDNA-2

In this paper, we implement our proposed algorithm on
dynamically reconfigurable processor DAPDNA-2 devel-
oped IPFlex Inc. DAPDNA-2 collects much path informa-
tion and calculates the optimum link-disjoint path pair by

parallel operation using bitmaps. A bitmap represents path
information recorded in candidate path collection phase,
and consists of bit sequence as shown in Figure 5. In
the bitmap the least significant bit is total cost of a path,
and the other bits represent wheather corresponding path
passed that link or not. We describe about the proposed
algorithm on DAPDNA-2 below.

1) Candidate path collection phase on DAPDNA-2:
We explain the example of candidate path collection phase
on DAPDNA-2 with the topology as shown in Figure 1.
First, the current search position is set to the source node
and the bitmap is stored in memory. Next, DAPDNA-2
proceeds the current search position one step (i.e. one
cost) toward the all connected links. If the current search
position reaches a new node, the bit corresponding to the
passed link is changed from ”0” to ”1”. In this moment,
DAPDNA-2 duplicates the current bitmap state equal to
the number of branches (i.e. the number of links that
gone out of the node). After the duplication, DAPDNA-
2 proceeds the current search positions toward the all
connected links and update the all bitmaps simultaneously
in every one clock. In a path search operation, the path
information with the loop is generated due to duplication
of bitmaps. To solve this problem, DAPDNA-2 discards
the bitmaps that the bit of the same place is changed
twice because a loop path passes the same link more than
twice. This manner prevents a loop path being collected.
If the bit corresponding to the destination link (i.e. the link
connected to the destination node) is changed to 17, the
bitmap is registered as a candidate path. For example, a
bitmap of candidate paths as shown in Figure 6 represents
that the candidate path 1 is a 5-cost path which passes link
AB, BC, CD, DF, and the candidate path 2 is a 6-cost path
which passes link AB, BC, CF. In this way, DAPDNA-2
can collect multiple candidate path information in parallel.
Finally, the candidate path collection phase ends when the
determined numbers of candidate paths are collected or
the determined number of clocks passed without collecting
sufficient candidate paths.

In the candidate path collection phase, the cost infor-
mation of the collected candidate paths is equal to the
total clocks since FLDPA began to this phase, because
current search positions are updated every one clock and
all bitmaps are recorded every one clock too. Therefore,
DAPDNA-2 can easily limit to collect candidate paths
which are less likely to be selected for optimum link-
disjoint paths because the all candidate paths can be
collected at destination node in ascending order of cost.

2) Limit to collect path information: In the candidate
path collection phase, the bitmap is duplicated frequently
with time passage, therefore, DAPDNA-2 must keep up
to N! bitmaps in worst case. To solve this problem,
DAPDNA-2 limits the number of collected candidate path
to agmi; at all nodes. For instance, when «y;,;; is set to
30, all bitmaps which reached each node the 31st are
discarded. This manner can limit the total number of
bitmaps which DAPDNA-2 finally keeps to N - @jinis-
Though the effect of the limitation is very large, the case
where the link-disjoint path cannot be found may exists
due to value of @y, is small. Therefore, it is necessary

Proceedings of APCC2008 copyright © 2008 IEICE 08 SB 0083

[Parallel Search with Multi Paths |

® O} l Candidate Paths
AB BC CD b CF

3

Destination Cost
Path 1 1 1 1 | 1 05
Path 2 1 1 0 [-- 1 06
Pathn [O [0 [L [-+] 1 J09]

Fig. 6. DAPDNA-2 registers a bitmap which passed destination link as
candidate path.

to set the best value of aj; according to the network
topology or the number of node in network.

3) Path selection phase on DAPDNA-2: FLDPA starts
the path selection phase when the determined number of
candidate paths are collected. In the path selection phase,
DAPDNA-2 calculates all link-disjoint path pairs from all
candidate paths using bit-based operation, and calculates
the best pair which is the lowest cost among them. The
example of path selection is shown below.

Figure 7 shows that DAPDNA-2 calculates the link-
disjoint path pair from four candidate paths. At first,
DAPDNA-2 searches the link-disjoint path pair of pathl
from the all candidate paths. DAPDNA-2 checks whether
the pair of path 1 and path 2 is link-disjoint or not.
DAPDNA-2 executes AND operation between bitmap of
path 1 and bitmap of path 2. As a result, the bit of link CE
is 1. This means the path 1 and the path 2 passed common
link CE. Therefore both paths are not link-disjoint. Thus,
in AND operation results of each bit in the bitmaps, if the
bit changes to 1 even one place, the pair of path is not link-
disjoint. On the contrary, when the bit doesn’t stand any
place, the pair of path is exactly link-disjoint. DAPDNA-
2 repeats AND operation for all path pairs such as path
1-path 3, path 1-path 4, path 2-path 3...etc, and all link-
disjoint path pairs can be calculated. Finally, the pair of
paths with the minimum total cost among them is selected
as the optimum link-disjoint path pair.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the calculation clocks of
k-shortest path algorithm and FLDPA.

A. Calculation clocks

In FLDPA, it takes 50 clocks to execute the dataflow
which shown in Figure 3. When the number of collected
candidate paths is set to @, FLDPA executes until @
paths between the source node and the destination node are
collected. The clocks that ay;,,;; paths are collected equal to
the clocks that (aj;,;; — 1) th higher cost path counts from
the shortest path. Now, we consider square-mesh network
whose link-cost is L. The execution clocks that FLDPA
collects shortest path is 50-L-2(VN -1), when the number
of nodes is N. Moreover, the path which is a ajj; — 1 th
higher cost than shortest path takes more L clock in the
worst case. In addition, FLDPA needs AND operation at
the path selection which takes three clocks, so total clocks

AB BC CcD CE DE EF Cost
Path1 1 1 0 0 1 1 10
Path 2 0 0 0 1 1 0 15
Path 3 1 1 1 0 0 1 20
Path 4 0 0 1 1 0 0 30
ag [e [oo [ce [oe [er [cost
Path 1 1 1 0] 0 1 1 10
Path 2 0 0 0 1 1 0 135

Execute
Q “AND" Operation
ResulthlOlOlOl(f)lOl

Not link disjoint

Fig. 7. In path selection phase, DAPDNA-2 calculates optimum link-
disjoint path pair using bit-based operation.

to select the k link-disjoint paths is 3 -, ji;ni:Cx. Therefore,
total calculation clocks of FLDPA is 50 - L - 2(VN - 1+
2L(@pimis — 1) + 3 ¢ timirCh-

On the other hand, the calculation clocks are pro-
portional to the second power of the number of nodes,
since the k-shortest path algorithm calculates based on
the Dijkstra’s algorithm. So total calculation clocks of k-
shortest path algorithm is 8- k - N2. Here, 8 is a constant
coefficient which execute the Dijkstra’s algorithm.

B. Performance comparison

Figure 8 shows the calculation clocks that FLDPA and
the k-shortest path algorithm find a link-disjoint path pair
(k = 2) in mesh topology (L = 10). We find that the
calculation clocks of FLDPA is far lower than the k-
shortest path algorithm when N is large. For instance, in
196-node network, FLDPA decreases calculation clocks
about 90% compared with the k-shortest path algorithm.
This reason is that FLDPA increase calculation clocks very
gradually although N increase by parallel processing, on
the other hand, the k-shortest path algorithm based on the
Dijkstra’s algorithm increases calculation clocks rapidly
as N increase. Moreover, FLDPA has less influence in
a@jimir and can find the best link-disjoint path pair at high
speed compared with the k-shortest path algorithm because
FLDPA is able to collect much candidate paths in a large-
scale network.

V. CONCLUSION

In this paper, we have proposed fast new parallel link-
disjoint path search algorithm. It is suitable for dynam-
ically reconfigurable processor like DAPDNA-2. In the
k-shortest path algorithm, the computation complexity of
calculation process increases rapidly as the number of
nodes increases. Moreover, it is difficult for k-shortest path
algorithm to find the optimum link-disjoint path since k-
shortest path algorithm always finds the shortest path at
first and removes these links from the network. On the

Proceedings of APCC2008 copyright © 2008 IEICE 08 SB 0083

2 T T T
@ k-shortest path .I
O LDPsA a, , =30
1s0000 || A 1DPSA ;. =80 .
” ®
(=]
=
[¥]
S 100000
u I~ . -
i
z
o
o]
50000 | ° 4
" A A A
A8 2 A A A ﬁ
0 50 100 150 200

number of node

Fig. 8. Number of calculation clocks dependence of number of nodes
in the network

contrary, our proposed algorithm can collect all path in-
formation in short time by simultaneous multi-path search
using DAPDNA-2. Therefore, FLDPA can find the opti-
mum link-disjoint path pair at high speed compared with
the k-shortest path algorithm. In performance evaluation,
We show that the calculation clocks of FLDPA decreased
greatly compared with the k-shortest path algorithm when
the network is large. Similarly, we show that FLDPA’s
calculation clocks by increase of aj,; increased very
gradual, and FLDPA can take a lot of candidate paths.
We show that FLDPA is very efficient algorithm for link-
disjoint path selection in a future network.

ACKNOWLEDGMENT

The authors thank Tomomi Sato and other staff for
helping with implementation on DAPDNA-2 (IPFlex Inc).
This work was supported by Global COE Program “High-
Level Global Cooperation for Leading-Edge Platform on
Access Spaces (C12)” and by the Japan Society for the
Promotion of Science’s (JSPS) Grant-in-aid for Scientific
Research.

REFERENCES

[1] Takeshi TOMOCHIKA, Yuichi IKEJIRI, Tomoaki
KOBAYAKAWA, Internet Routing, Shoeisha, Tokyo, 2005.

[2] Dahai Xu, Member, IEEE, Yang Chen, Student Member, IEEE,
Yizhi Xiong, Chunming Qiao, Member, IEEE, and Xin He, Mem-
ber, IEEE, “On the Complexity of and Algorithms for Finding the
Shortest Path With a Disjoint Counterpart”, IEEEACM TRANSAC-
TIONS ON NETWORKING, Vol. 14, No. 1, Feb. 2006.

[3] A. Sen, B. Shen, S. Bandyopadhyay, and J. Capone, “Survivability
of lightwave networks path lengths in WDM protection scheme”,
Jernal of High Speed Network, vol. 10, no, 4, pp. 303-315, 2001.

[4] Sudip Misra, Member, IEEE, and B. John Oommen, Fellow,
IEEE, “An Efficient Dynamic Algorithm for Maintaining All-Pairs
Shortest Paths in Stochastic Networks”, IEEE TRANSACTIONS ON
COMPUTERS, Vol. 55, No. 6, Jun. 2006.

[S] E.W.Dijkstra’s, “A note on two problems in connection with
graphs,” Numerische Mathematik, vol.1, pp.269-271, 1959.

[6] IPFlex Inc (http://www.ipflex.com)

[7] Toshinori SUEYOSHI, Hideharu AMANO, Reconfigurable system,
Ohmsha, Tokyo, 2005.

