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Abstract— Trellis-coded MPSK proposed by Ungerboeck is
noncoherently catastrophic. In this paper, we propose a new
scheme in which Ungerboeck-type trellis-coded MPSK is not
a noncoherently catastrophic code. In the proposed scheme,
a particularly designed differential encoder is added in front
of the trellis encoder such that noncoherently-equivalent code
sequences correspond to the same data bits. With this differential
encoder, trellis-coded MPSK proposed by Ungerboeck is no
longer noncoherently catastrophic and thus achieve better error
performance. Moreover, new trellis codes which have better bit
error rate than Ungerboeck’s codes for the proposed scheme are
found by computers.

I. INTRODUCTION

Trellis-coded modulation (TCM) proposed by Ungerboeck
[1]-[3] can provide bandwidth-efficient transmission over the
additive white Gaussian noise (AWGN) channel. For the
TCM in [1]-[3], coherent decoding is used and hence carrier
recovery is needed.

Noncoherent detection is a detection technique that can
be implemented without carrier phase tracking. Since DPSK
(differential phase shift keying) cannot offer satisfactory error
performance, designing coded modulation for noncoherent de-
tection is important. In 1996, noncoherent trellis-coded MPSK
(M -ary phase shift keying), for which the decoding can be
implemented noncoherently, was proposed in [4]. The decoder
is the Viterbi decoder using a sliding window of the obser-
vations to compute branch metrics. Each observation covers
several branches of the trellis. Different decoding algorithms
and metrics were proposed in [5]–[7]. The optimal decoding
trellis diagram used in the Viterbi algorithm for noncoherent
trellis-coded MPSK is an augmented trellis diagram for which
the number of states grows exponentially with the observation
length. Using the optimal decoding trellis is impractical when
the observation length is not small. Hence, decoding algo-
rithms which use the original trellis are preferred. The trivial
algorithm, called basic decision feedback algorithm (BDFA)
[5], is the simplest one.

Two code sequences are said to be noncoherently-equivalent
if a constant phase rotation of one sequence results in the other
sequence. If two code sequences are noncoherently-equivalent,
the noncoherent receiver cannot distinguish one from the other.
Noncoherently catastrophic codes are defined as codes in
which two infinite-length code sequences are noncoherently-
equivalent and correspond to different data bits [4].

A TCM is said to be rotationally invariant (RI) under a
θ phase shift if rotating any code sequence by θ is always
another code sequence corresponding to the same data bits
[13]-[17]. Consequently, a TCM which is RI under θ is also RI
under any multiple of θ. Noncoherent trellis-coded MPSK can
be classified into two categories: RI and anti-RI, i.e., no two
code sequences are rotated versions of each other [11]. Trellis-
coded MPSK which is RI under 2π/M is not noncoherently
catastrophic and hence can be used for noncoherent decoding.
However, RI codes which have been proposed were designed
for maximizing Euclidean distance, not noncoherent distance.
Trellis-coded MPSK in [4] is anti-RI since noncoherently-
equivalent code sequences do not exist. However, codes in
[4] have lower transmission rate than coherent trellis-coded
MPSK in [1]-[3].

Codes of trellis-coded MPSK in [1]-[3] are noncoherently
catastrophic. In [8], we proposed a method which modifies
trellis-coded MPSK in [1] to avoid noncoherently-equivalent
code sequences. We showed that by this method the TCM
is not a noncoherently catastrophic code. Then in [9], the
authors extended our method on trellis-coded 16QAM to avoid
noncoherently-equivalent code sequences also. However, in
[10], we indicated that the code of [9] is a noncoherently
catastrophic code by listing several noncoherently-equivalent
code sequences in the code of [9]. Recently we realize that the
modified TCM in [8] is also a noncoherently catastrophic code.
The verification in [8] was erroneous in fact. In a noncoher-
ently catastrophic code, perhaps only a few code sequences are
noncoherently-equivalent. In such case, if the transmitted code
sequence is long enough, the transmitted code sequence is
unlikely to be the sequence which is noncoherently-equivalent
to another sequence. Therefore, in [10], we indicated that a
noncoherently catastrophic code does not necessarily result
in catastrophic error performance. Nevertheless, the error per-
formance can be improved if noncoherently-equivalent code
sequences corresponding to different data bits can be avoided.

In this paper, we propose a novel noncoherent trellis-coded
MPSK scheme. In the proposed scheme, the noncoherent
trellis codes are partial-RI codes in which some, not all,
code sequences rotated by a constant phase are another code
sequences corresponding to the same data bits. These code
are quite different to conventional noncoherent trellis codes
which are either RI or anti-RI. In our scheme, Ungerboeck-
type trellis-coded MPSK in [1]-[3] is used, and a particularly
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designed differential encoder is added in front of the trellis en-
coder. In stead of attempting to avoid noncoherently-equivalent
code sequences as [8] and [9], we let all noncoherently-
equivalent code sequences correspond to the same data bits by
this differential encoder so that the code is not a noncoherently
catastrophic code. Simulation results indicate that the error
performance can be improved by the proposed differential
encoder.

A noncoherent distance meassure for noncoherent trellis-
coded MPSK was proposed in [12]. Because the distance
was derived for the optimal decoding trellis, a new distance
measure for BDFA which is modified from the distance in
[12] is proposed in this paper. We use computers to search
codes which maximize minimum noncoherent distance. For
the simulations using BDFA, searched codes in general have
better error performance than the original codes in [1]-[3]
which were designed for coherent decoding.

II. NONCOHERENT DECODING AND DISTANCE

Consider trellis coded M -ary PSK signals which are trans-
mitted over an additive white Gaussian noise (AWGN) chan-
nel. For the convenience of presentation, the number of
symbols in a trellis branch is assumed to be one. The baseband
transmitted symbol at time unit t is xt = ejφt where φt is the
modulation phase. The corresponding baseband symbol at the
receiver is rt = xte

jθ + nt, where ni is a zero-mean white
complex Gaussian noise sample with variance 2σ2, and θ is an
arbitrary phase shift which is uniformly distributed over [0, 2π)
and assumed to be constant for L consecutive symbols.

In [4], the decoding metric for a possible code sequence
x̂ = {· · · , x̂t, x̂t+1, · · · } is

η(A) =
∞∑

t=−∞
η
(A)
t =

∞∑
t=−∞

∣∣∣∣∣
L−1∑
i=0

rt−ix̂
∗
t−i

∣∣∣∣∣
2

. (1)

where x̂∗
t is the complex conjugate of x̂t. The number of

branches which are covered by one observation is L. In [6],
two different metrics were proposed as
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We describe BDFA in the following. BDFA keeps track
of the associated survivor for each state. Let Jt(v) be the
accumulated metric for the survivor path of state v at time unit
t. Let Bt(v, l) represent the l-th (l ∈ {1, 2, · · · , R}) branch
that connect state sl at time unit t− 1 and state v at time unit
t. Let Pt(v, l) = {· · · , x̂t−i(v, l), x̂t−i+1(v, l), · · · , x̂t(v, l)}
represent the path which is the union of Bt(v, l) and the
survivor path of state sl at time unit t − 1. Let ηt(v, l) be
the branch metric for Bt(v, l) which can be η

(A)
t , η

(B)
t or

η
(C)
t . For BDFA, the metric for the path Pk(v, l) is computed

as
Ĵt(v, l) = Jt−1(sl) + ηt(v, l). (4)

The index l that maximizes Ĵt(v, l), denoted as m, is chosen
to update the survivor of state v at time unit t and J t(v) =
Ĵt(v, m).

If Ns denotes the number of states in the original trellis
diagram and R denotes the number of branches diverging from
a state, the number of states in the optimal trellis diagram
is Ns × RL−1. Because the optimal trellis is complicated,
decoding algorithms which use the original trellis and take
future metrics into account, like modified decision feedback
algorithm (MDFA) [5] and improved decision feedback al-
gorithm (IDFA) [7], were proposed. To detect r t, all later
metrics ηt+1, ηt+2, · · · , ηt+L−1 which are related to rt should
be considered in advance. Let J̃t+L−1(v, l) be the estimated
future metric at time t + L − 1 for Pk(v, l), where

J̃t+L−1(v, l) = Ĵt(v, l) +
t+L−1∑
q=t+1

η̃q (5)

in which η̃q is the estimated branch metric at time q. Because
rq−ix̂

∗
q−i for q− i > k can not be obtained, MDFA and IDFA

propose different methods to compute η̃q . The index l that
maximizes J̃k+L−1(v, l), denoted as m, is chosen to update
the survivor of state v at time unit k and Jk(v) = Ĵk(v, m).

Consider two code sequences that diverge from the same
state, say s, and after k branches remerge into a com-
mon state, say s′. Let (2L + k − 2) × 1 matrices x =
(x1, · · · , xL−1, xL, · · · , xL+k−1, xL+k, · · · , x2L+k−2)T and
x̂ = (x1, · · · , xL−1, x̂L, · · · , x̂L+k−1, xL+k, · · · , x2L+k−2)T

represent the two code sequences where x1, · · · , xL−1

are symbols of the common path before state s and
xL+k, · · · , x2L+k−2 are symbols of the same path after state
s′. A (2L + k − 2) × (2L + k − 2) matrix A is defined by
Aij = x̂ix̂

∗
j − xix

∗
j where x̂k = xk for k < L or k ≥ L + k.

Hence, A is Hermitian and can be expressed as

A =

⎛
⎝ O B O

BH C DH

O D O

⎞
⎠ (6)

where O is an (L − 1) × (L − 1) zero-entry matrix. In [12],
it is shown that the approximate Chernoff upper bound on the
pairwise error probability of using η (B) is

P (x → x̂) ≤ exp
{
−d2(x, x̂)

8σ2

}
(7)

where

d(x, x̂) =
|xHAx|√
xHA2x

(8)

determines the asymptotic high-SNR error probability. A code
should be designed or searched for maximizing minimum
noncoherent distance which is defined as the minimum value
of d(x, x̂) in (8) between any two code sequences x and x̂
corresponding to different data bits.
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For BDFA, to decide the survivor of state s ′,
xL+k, · · · , x2L+k−2 are not taken into account. Therefore,
the distance definition in (8) in not indicative for BDFA. By
a derivation which is similar to the derivation in [12], we
propose a distance definition for BDFA as

d′(x, x̂) =
|xHA′x|√
xHA′2x

(9)

where A′ is an (L + k − 1)× (L + k − 1) matrix defined by
A′

ij = x̂ix̂
∗
j − xix

∗
j where x̂k = xk for k < L. Thus, A′ can

be expressed as

A′ =
(

O B
BH C

)
. (10)

III. PROPOSED ENCODING SCHEME

Consider DPSK first. Fig. 1 shows two descriptions of dif-
ferential PSK. The common description illustrated in Fig. 1(a)
is that at time t, data bits are fed into the signal mapper to
obtain PSK symbol s′t = ejΔφt , and then s′t is sent into a
differential encoder which results in the transmitted symbol
st = ejφt where φt = φt−1 + Δφt mod 2π.

Based on this description of DPSK, conventional trellis-
coded MPSK for the noncoherent receiver puts the convo-
lutional encoder before the signal mapper and differentially
encode coded symbol s′

t also. However, such differential
encoding affects Euclidean distance. For example, consider
two code sequences of trellis-coded 8PSK {0, 0, 0, 0, · · · } and
{0, 4, 4, 0, 0, · · · }. The squared Euclidean distance between
them is 8. After differentially encoding, this pair becomes
{0, 0, 0, 0, · · · } and {0, 4, 0, 0, · · · } whose squared Euclidean
distance is only 4.

Let the modulation phase and data phase of differential
QPSK be φt = btπ/2 and Δφt = Δbtπ/2 respectively where
bt, Δbt ∈ {0, 1, 2, 3}. Consequently, we have bt = bt−1 +Δbt

mod 4. The second description of DPSK is shown in Fig. 2(b).
For Gray labeling, Δbt is determined by Δbt = ut

2×2+(ut
2⊕

ut
1) where ⊕ denotes the XOR operator. Defining v t

1 and vt
2

by vt
2 × 2 + vt

1 = bt, we have

vt
2 × 2 + vt

1 = vt−1
2 × 2 + vt−1

1 + ut
2 × 2 + (ut

2⊕ ut
1) mod 4.

(11)
The special differential encoder in Fig. 1(b) produces v t

1 and
vt
2 according to (11).

Based on the second description, we propose a novel
noncoherent trellis-coded M -ary PSK as follows. For the
convenience of presentation, we restrict M to be 8. Fig. 2
shows the block diagram of the proposed transmitter where the
convolutional encoder is systematic and the baseband trans-
mitted symbol is xt = ej(vt

2×4+vt
1×2+vt

0)π/4. One property
of Ungerboeck-type trellis-coded MPSK is that v t

1 and vt
2 do

not affect the value of vt
0. In other words, the value of v t

0

is determined before ut
1 and ut

2 are sent into the differential
encoder.

At time t, for data bits ut
1 and ut

2, we have

Δbt = ut
2 × 2 + (ut

2 ⊕ ut
1). (12)
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t es ' tj
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Differential Encoder
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Fig. 1. Two descriptions of differential QPSK.

Proposed
Differential

Encoder

8PSK
Modulator

Encoder

D
D

D

tu2
tv 2

Systematic Convolutional
Encoder

tu1

tv 1
tv 0

Fig. 2. Block diagram of the proposed transmitter.

The proposed differential encoder first computes b t by

bt = vt−1
2 × 2 + vt−1

1 + Δbt mod 4. (13)

Then the output bits of the differential encoder v t
1 and vt

2 are
decided according to

vt
2 × 2 + vt

1 =
{

bt + 1 mod 4 if (vt−1
0 , vt

0) = (1, 0)
bt mod 4 otherwise

(14)
Note that if (vt−1

0 , vt
0) 	= (1, 0), vt

1 and vt
2 are the output

symbols of conventional differential QPSK.
Concatenated with the differential encoder defined above,

it can be shown that any trellis-coded MPSK that uses a
systematic convolutional encoder in which v t

1 and vt
2 do not

affect the value of vt
0 is not noncoherently catastrophic.

Trellis codes in [1]-[3] were not designed for noncoherent
decoding, so searching new trellis codes that is appropriate for
the proposed scheme is necessary. For the proposed differential
encoder, convolutional encoders with 4, 8, 16 and 32 states
for L = 4 and 8 are searched by computers. Parity-check
coefficients h2, h1, h0 defined in [3] are used to denote trellis
codes. Table I shows searched codes for maximizing minimum
noncoherent distance of (8). The minimum noncoherent dis-
tance of (8) for Ungerboeck’s codes in [1]-[3] is also listed
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TABLE I

UNGERBOECK CODES AND CODES SEARCHED FOR MINIMUM

NONCOHERENT DISTANCE OF (8).

states L
Ungerboeck’s code searched code

h2 − h1 − h0 distance h2 − h1 − h0 distance

8 4 04-02-11 1.824 00-02-17 1.872
8 04-02-11 1.971 – –

16
4 16-04-23 1.860 00-20-35 1.907
8 16-04-23 2.051 – –

32
4 34-16-45 1.887 00-40-57 1.909
8 34-16-45 2.120 – –

TABLE II

UNGERBOECK CODES AND CODES SEARCHED FOR MINIMUM

NONCOHERENT DISTANCE FROM (9).

states L
Ungerboeck’s code searched code

h2 − h1 − h0 distance h2 − h1 − h0 distance

8
4 04-02-11 1.670 00-02-17 1.753
8 04-02-11 1.855 00-14-13 1.907

16 4 16-04-23 1.612 00-20-35 1.797
8 16-04-23 1.909 – –

32 4 34-16-45 1.717 00-40-57 1.827
8 34-16-45 1.953 20-30-75 1.965

in Table I for comparison. Codes which have larger distance
than Ungerboeck’s codes can be found for 8, 16 and 32 states
with L = 4. Table II presents searched codes for maximizing
minimum noncoherent distance of (9). Codes for 8, 16 and 32
states with L = 4 are the same as Table I, and new codes for
8 and 32 states with L = 8 are obtained.

For the decoding in simulations, we use BDFA with L = 4
or 8 and the decoding metric is η (B). Fig. 3-6 present the
simulation results for 4, 8, 16 and 32 states, respectively. For
the codes in [1]-[3], adding the proposed differential encoder
indeed improves the error performance. Besides, all searched
codes in Table I and Table II have better error performance
than the codes in [1]-[3] except for the 32-state with L = 8.
We find that this distance measure is not well indicative of bit
error rate (BER) for this scheme. Thus we search trellis codes
according to their simulated BER. Table III lists some searched
codes which have good BER but are different to codes in
Table I and Table II. Searched codes which have the best BER
obviously outperform original codes in [1]-[3] for L = 4.

IV. CONCLUSION

We have proposed a novel noncoherent trellis-coded MPSK
scheme. In this scheme, high-rate Ungerboeck-type code is
not noncoherently catastrophic because the particularly de-
signed differential encoder let noncoeherntly-equivalent code

TABLE III

OTHER GOOD-PERFORMANCE CODES.

states L h2 − h1 − h0 dnc from (8) dnc from (9)
4 4 06-02-07 1.498 1.335
8 4 00-10-15 1.824 1.670
16 8 00-20-35 1.947 1.676
32 8 00-02-55 1.949 1.922
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sequences correspond to the same data bits. In addition, we
modify the noncoherent distance definition to be suitable for
BDFA. Several new codes are searched by computers, which
have better error performance than the original codes in [1]-
[3].
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