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Abstract—This paper proposes a localization algorithm
that needs no priori knowledge about path loss exponents
for non-line-of sight (NLOS) environments. The proposed
algorithm utilizes both time-of-arrival (TOA) measurements
and received-signal-strength (RSS) measurements. In the
proposed localization algorithm the distances estimated with
TOA measurements are weighted by the believable factor
(BF) derived from the difference between the estimated
distance with TOA measurements and that with RSS ones. In
addition the path loss exponents are estimated for each node
in a maximum likelihood (ML) manner. Simulation results
show that the proposed algorithm can efficiently reduce
the effect of NLOS error and achieve higher localization
accuracy than the other conventional algorithms, TOA, RSS,
and BF ones, without priori knowledge about the path loss
exponents.

I. INTRODUCTION

Target localization is one of the important applications
of wireless sensor networks [1]. Smart disposable mi-
crosensors can be deployed on the ground, in the air,
under water, on bodies, in vehicles, and inside buildings.
A system of networked sensor nodes can detect and track
threats and be used for targeting and monitoring. Each
sensor node will have the embedded processing capabil-
ity, and will potentially have multiple onboard sensors,
operating in the acoustic, infrared, and magnetism. Current
and potential applications of sensor networks include envi-
ronmental monitoring, traffic control, food administration,
tracking customers, and so on [2], [3].

A general technique of localizing a target is from mea-
surements of time-of-arrival (TOA), time-difference-of-
arrival (TDOA), angle-of-arrival (AOA), received-signal-
strength (RSS), or a combination of these [4]. In TOA
three or more sensor nodes measure the TOAs of the
transmission from the target, each of which makes a circle,
and the intersections of circles give the target location.
Owing to errors in TOA measurements, the circles do not
intersect at a unique point. Thus, it is necessary to find a
location that best fits the measurements.

One of the other serious problems is the non-line-of-
sight (NLOS) condition, where the signal arrives at a
sensor node from reflections, and there is no direct or line-
of-sight (LOS) path. Localization with an NLOS TOA can
lead to large estimation errors [5].

There are two methods to cope with the NLOS condi-
tion. The first method localizes with all LOS and NLOS

condition sensor nodes, but provides weighting or scaling
to minimize the effects of the NLOS contributions [6]–
[8]. The advantage of this method is that there is always
an estimate, even when all the sensor nodes are NLOS.
The problem is that the answer can be unreliable, because
NLOS errors, though reduced, are always present.

The second method attempts to identify NLOS sensor
nodes and localize with only the LOS sensor nodes.
Identification of LOS sensor nodes is by a probabilistic
model [9], residual information [10], and so on. If the
identification is correct, the accuracy is what the local-
ization algorithm can provide, however, there is always
the possibility of wrong identification. The identification
requires at least three LOS sensor nodes to localize. In
ideal environments where there is no noise, the estimated
point is decided by more than or equal to three sensor
nodes, because each circle calculated by each sensor
node’s measurement intersects at a unique point. However,
in real environments, using RSS localization, propagation
environment (path loss exponent) would be changed for
place or time because of AWGN, NLOS noise, and other
kinds of noise.

An localization algorithm in NLOS named believable
factor algorithm (BFA) was proposed in [8]. The BFA
is a kind of weighting to minimize the effects of the
NLOS contributions in cellular networks and is shown to
achieve the better performance than the other conventional
algorithms when the assumed channel models, that is, the
assumed path loss exponents are perfectly matched to the
real ones. However, as written above, we often have no
priori knowledge about the path loss exponents. In addition
the BFA needs some assumptions that are not favorable for
wireless sensor networks. First is that the Mobile Station
(MS) must be surrounded by three base stations (BSs).
Second is that the BFA uses only three BSs to localize
the MS.

In this paper, we propose a localization algorithm that
needs no priori knowledge about the path loss exponents
for NLOS environments. The proposed algorithm utilizes
both TOA and RSS measurements. In the proposed lo-
calization algorithm the distances estimated with TOA
measurements are weighted by the believable factor (BF)
derived from the difference between the estimated distance
with TOA measurements and that with RSS ones. In ad-
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dition the path loss exponents are estimated for each node
in a maximum likelihood (ML) manner. Simulation results
show that the proposed algorithm can efficiently reduce
the effect of NLOS error and achieve higher localization
accuracy than the other conventional algorithms, TOA,
RSS, and BF ones, without priori knowledge about the
path loss exponents.

The remainder of the paper is organized as follows.
The received measurement model is outlined in Section
II. The proposed algorithm is outlined in Section III. The
simulation results are discussed in Section IV, followed by
some concluding remarks in Section V.

II. RECEIVED MEASUREMENT MODEL

We consider a two dimensional sensor field, where n
sensor nodes and one target exist. At each sensor node,
the TOA measurement determines a circle centered at
the sensor node and the radius is equal to the TOA
measurement multiplied by the light speed. If there is
no NLOS errors and measurement noises, the target must
locate on each circle, thus, the intersection of three such
circles is its position.

The true distance between the sensor node i and the
target is described as

Ri =
√

(x − xi)2 + (y − yi)2 , i = 1, 2, ..., n (1)

where (x, y) is the real position of the target, (xi, yi) is
the position of the sensor node i.

The TOA measurement for the sensor node i is de-
scribed as [4]

ti =
Ri

vc
+ wd + ui (2)

where the sensor node i is contaminated with the TOA
measurement noise wd and the NLOS range error ui.
wd is AWGN (additive white Gaussian noise), whose
distribution is the normal probability distribution function
N (0, δ2

d) with zero-mean and the variance of the TOA
measurement noise δ2

d. The sensor node i in NLOS con-
dition is contaminated with not only wd but also ui. ui is
modeled as positive random uniform distribution variable,
whose distribution is U(0, uMAX) where uMAX represents
the maximum possible bias of NLOS range error [11].

Under NLOS condition, the estimation accuracy of the
TOA estimation degrades. The obstacles block the direct
path from the target to the sensor node, and the sensor
node under NLOS condition gets larger measurement
than that under LOS condition owing to the diffracted or
reflected path. Fig. 1 shows an example of TOA measure-
ments under LOS and NLOS conditions. In the figure,
the estimated distances between the sensor nodes and the
target are shown by the circles. In NLOS condition, the
circles become larger than those in LOS condition owing
to the obstacles block [8].

The RSS measurement for the sensor node i in dBm is
described as [12]

Pi = P0 − 10κi log10

Ri

r0
+ wr (3)

where P0 is the RSS measurement at unit distance r0 from
the target. κi is the path loss exponent, which is set to the
sensor node i. The κi takes generally, the value within
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Fig. 1. An example of TOA measurements under LOS and NLOS
conditions

the range from 2.0 to 4.0 and it may change according
to the environments [4]. wr is AWGN, whose distribution
is N (0, δ2

r). δ2
r is the variance of the RSS measurement

noise.

III. CONVENTIONAL LOCALIZATION ALGORITHM IN
NLOS

In this section, we will introduce a conventional local-
ization algorithm in NLOS condition [8].

A. Believable Factor Algorithm (BFA) [8]

BFA is the localization algorithm for cellular networks,
where three stationary BSs (Base Stations) are used for
localization. There are some assumptions need for the BFA
algorithm: At any instant, not more than one BS is LOS;
each pair of overlapping range circles intersects at two
distinct points, thus, the three circles form an area where
the MS (Mobile Station) location is.

Believable factor (BF) is calculated by the distances
estimated with the TOA and RSS measurements, and it
represents the degree of reliability for measurement.

In [8] the BFA is evaluated with COST231-Walfish-
Ikegami model [13]. Given the received power and the
path loss models under LOS and NLOS conditions, the
estimated distance rLOSi and rNLOSi are calculated as

rLOSi = 10(Li−C1)/26 (4)
rNLOSi = 10(Li−C2)/38 (5)

where C1, C2 are the parameters dependent on the carrier
frequency, antenna heights of MS and BS, signal incident
angle, and MS moving direction,and so on. Li (dB) is the
estimated path loss converted from the received power.

The BF is given by [8]

αi =



1 − |rNLOSi − di|
di

,

(|rNLOSi − di| ≪ |rLOSi − di| & di ≥ rNLOSi)

1 − |rNLOSi − di|
rNLOSi

,

(|rNLOSi − di| ≪ |rLOSi − di| & di < rNLOSi)

1 − |rLOSi − di|
di

,

(|rLOSi − di| ≪ |rNLOSi − di| & di ≥ rLOSi)

1 − |rLOSi − di|
rLOSi

,

(|rLOSi − di| ≪ |rNLOSi − di| & di < rLOSi)

(6)
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where di = tivc. As long as the path loss model approxi-
mates the propagation condition quite well, the BFA will
not deteriorate the optimizing result, and concluded to be

minx f(X) = (1 − α1) ∥ X − XA ∥2 +

(1 − α2) ∥ X − XB ∥2 +(1 − α3) ∥ X − XC ∥2
(7)

where X and XA,B,C are the two dimensional vectors, X =
(x, y), XA,B,C = (xA, yA), (xB, yB), (xC, yC). A, B and
C are intersections of three circles. ∥ • ∥ indicates the
distance norm.

The BFA is presented for mobile location estimation
using only three BSs in the absence of LOS paths.
Simulation results show that, for the cells of 1 km radius,
the positioning accuracy of BFA is much higher than that
of the conventional algorithm, if the assumed path loss
models match the real ones.

IV. PROPOSED ALGORITHM

A. TOA Localization

We use n sensor nodes to localize a target. The sensor
field is delimited like the grid, and likelihood, which
represented by RMSE (root mean square error) is cal-
culated at all the grid points. The grid point where the
likelihood takes the largest is decided to be the estimated
point. RMSE is calculated by the difference between the
estimated distance and the distance between the candidate
grid point and each sensor node position.

The TOA localization is described as

di = ti · vc (8)

δg,i =
√

(xi − xg)2 + (yi − yg)2 (9)

et =

√√√√√ n∑
i=1

(δg,i − di)
2

n
(10)

X̂t = arg min
Xt

et (11)

where di is the estimated distance between the sensor node
i and the target using TOA localization including errors.
(xg, yg) is the candidate grid point. et is the RMSE using
TOA localization, and X̂t is the estimated position vector
using TOA localization.

If there are some sensor nodes under NLOS condition,
estimated accuracy is greatly deteriorated.

B. RSS Localization and Attenuation Constants Estima-
tion

The RSS localization and the attenuation constants
estimation are described as

ri = 10h(κi) (12)

h(κi) =
(

P0 − Pi

10κi
+ 10 log10 r0

)
(13)

er =

√√√√√ n∑
i=1

(δg,i − ri)
2

n
(14)

< X̂r, κ̂ > = arg min
Xr,κ

er (15)

where ri is the estimated distance between the sensor
node i and the target using RSS. κi is the attenuation

TABLE I
SIMULATION PARAMETERS

Sensor field 13.0 × 14.0 m
Number of Targets 1 (random location)

Number of Sensor nodes 5, 7 (random location)
Path loss exponent [8] LOS: 2.6, NLOS: 3.8

RSS measurement at unit distance 0 dBm
TOA NLOS uniform distribution noise U (0, 1.60×10−8)

TOA normal distribution noise [14] N (0, (1.70)2 )
RSS normal distribution noise [14] N (0, (6.1×10−9)2)

Step size of field grid 1.0
Path loss exponent step size 0.2

constant, which is inherent to the sensor node i. κi takes
generally the value within the range from 2.0 to 4.0
and may change according to the environments [4]. κ
is κ = {κ1, κ2, · · · , κn}. er is the RMSE using RSS
localization, and X̂r is the estimated position vector using
RSS localization.

C. Believable Factor (BF) and Objective Function

The proposed BF of the sensor node i is defined by

αi =


1 − | ri − di |

di
, di ≥ ri

1 − | ri − di |
ri

, di < ri

(16)

which shows how believable the measurement is. The
BF nearer 1 is more reliable, and that nearer 0 is less
reliable. In the proposed localization algorithm the signal
attenuation constants are estimated so that the proposed BF
is written in simple form, compared to the conventional
one. Finally, the weighted BF objective function is
described as

etw =

√√√√√ n∑
i=1

(δg,i − αidi)
2

n
(17)

X̂ = arg min
X

etw (18)

where etw is the RMSE using TOA localization of BF
weight, and X̂ is the final estimated target position vector.
In the conventional BFA, the objective function is defined
as eq. (7), which needs intersections of circles. This
assumption is disadvantage for sensor networks, because
there are often the cases where no intersections exist so
that the conventional BFA cannot be applied. The proposed
algorithm with eqs. (17) and (18) can be applied to the
cases where no intersections exist.

V. SIMULATION RESULTS

The performance of the proposed algorithm is evaluated
by computer simulation. Simulations are done in two
cases. In the first case, we assume that there are five sensor
nodes at random position. In the second case, we assume
that there are seven sensor nodes at random position. We
list simulation parameters in Table I.

Figs. 2 and 3 show the estimation error using 5 sensor
nodes. Fig. 2 shows the results of using 2 LOS sensor
nodes and 3 NLOS sensor nodes. Fig. 3 shows the results
of using 5 NLOS sensor nodes. In all the figures, the
abscissa axis shows the estimation error between the
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Fig. 2. Comparison of estimation error distribution, LOS sensor nodes:
2, NLOS sensor nodes: 3, number of sensor nodes: 5

real target position and the estimated one, the vertical
axis shows the CDF (Cumulative Distribution Function)
of estimation error. In all the figures, “TOA” uses only
TOA localization, “RSS” uses only RSS localization with
the estimated path loss exponent for each sensor node,
“Proposed” represents the performance of the proposed
scheme with the estimated path loss exponents, “Proposed
ideal” represents the performance of the proposed scheme
when the path loss exponents are perfectly known, “BFA”
represents the performance of the conventional BFA with
three sensor nodes and the estimated path loss exponents.
In all the figures we can see that the proposed scheme
achieves better performance than the other conventional
schemes. This is because in the proposed scheme the TOA
estimation is weighted by its reliability so that the effects
of NLOS is reduced. In addition the proposed scheme can
localize using more than three sensor nodes. Thus, the
proposed scheme can achieve the better performance. The
reason why the conventional BFA has worst performance
is as follows. In the conventional BFA two intersections
of two circles are calculated and one intersection nearer to
the remaining sensor node is selected. If the target is not
surrounded by three sensor nodes, the wrong intersection
wrongly selected with higher probability and thus the es-
timation accuracy becomes worse. In addition the conven-
tional BFA uses only three sensor nodes for localization.
Thus, the conventional BFA has the worst performance.
Note that the conventional BFA is for the cellular systems.
The reason why TOA has worse performance than RSS is
as follows. RSS in this paper uses the estimated path loss
exponents so that the MSE of the distance becomes small.
TOA in this paper uses no way to modify the NLOS error
or AWGN error. Thus, TOA has worse performance than
RSS.

Figs. 4 and 5 show the estimation error using 7 sensor
nodes. Fig. 4 shows the result of using 3 LOS sensor nodes
and 4 NLOS sensor nodes. Fig. 5 shows the result of using
5 LOS sensor nodes and 2 NLOS sensor nodes. Figs. 4
and 5 are similar to Figs. 2 and 3 about performances.
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Fig. 3. Comparison of estimation error distribution, LOS sensor nodes:
0, NLOS sensor nodes: 5, number of sensor nodes: 5
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Fig. 4. Comparison of estimation error distribution, LOS sensor nodes:
3, NLOS sensor nodes: 4, number of sensor nodes: 7

VI. CONCLUSION

We propose a novel localization algorithm based
on time-of-arrival (TOA) measurements, received-signal-
strength (RSS) measurements, path loss exponents estima-
tion, and believable factor (BF), which describes how be-
lievable a TOA range measurement is, for sensor networks
in LOS and NLOS conditions. The proposed algorithm has
no need to discriminate between LOS and NLOS range
measurements. Simulation results show that the proposed
algorithm can efficiently reduce the effect of NLOS error
and can achieve higher localization accuracy than the other
conventional algorithms, TOA, RSS, and BF algorithms
in NLOS conditions. The proposed algorithm has high
localization accuracy without the knowledge of path loss
exponents, which is particularly important in practical
situations.
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