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Abstract—Since radio resources such as bandwidth and signal
power are limited and shared by users in a service area, all of the
users cannot consistently obtain satisfactory radio resources when
the number of users in the service area increases past a certain
point. A solution for such a problem is user-position control. In
the user-position control, the operator informs users of better
communication areas (or spots) and navigates them to these
positions. However, because of subjective costs caused by subjects
moving from their original to a new position, they do not always
attempt to move. To motivate users to contribute their resources
in network services that require resource contributions for users,
incentive-rewarding mechanisms have been proposed. However,
there are no mechanisms that distribute rewards appropriately
according to subjective factors involving users. Furthermore,
since the conventional mechanisms limit how rewards are paid,
they are applicable only for the network service they targeted. In
this paper, we propose a novel incentive-rewarding mechanism to
solve these problems, using an external evaluator and interactive
learning agents. We also investigated ways of distributing rewards
based on user state and user contributions. We applied the
proposed mechanism and reward control to the user-position
control, and demonstrated its validity.

I. INTRODUCTION

Since radio resources such as bandwidth and signal power
are limited and shared by users in a service area, all of the
users cannot consistently obtain satisfactory radio resources
when the number of users in the service area increases past a
certain point. As a result, if users make new service requests
in that area, they could be rejected or their service quality
could decrease to unsatisfactory levels. To solve this problem,
user-position control has been proposed [1][2].

Figure 1 shows the mechanism for user-position control,
where the operator suggests that user C move to a position
with a better channel. If user C obtains a higher transmission
rate by moving into a better channel area, as depicted in
Fig. 1, the amount of resources consumed will reduce and
throughput will be maintained. Then, as illustrated in Fig.
2, the operator can reassign spare resources to new users
D and E or existing users A, B, and C, resulting in greater
user satisfaction (utilities). In reassigning resources to existing
users, improvements to the user’s channel quality will increase
the utilities for all existing users. However, this increase in
utilities is not guaranteed to compensate for the subjective
cost experienced by the user having to move. In reassigning
resources to new users, movement to a new area by a user
will increase the number of accepted users, resulting in an
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Fig. 1. User-position control.
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Fig. 2. Resource reassignment by user-position control.

increase in their utilities. However, the utility of the user who
has had to move will not increase. Therefore, in both cases, an
incentive mechanism that compensates for this cost and that
motivates users to move is necessary.

Incentive-rewarding mechanisms for network services have
been proposed. They require resource contributions from users
such as those in peer-to-peer (P2P) and multi-hop networks;
rewarding them with incentives motivates users to contribute
to the services [3]-[5]. However, most of these studies have
predefined rewards and costs as objective mathematical for-
mulas, and they have discussed issues on a limited definition.
This means that no mechanisms distribute rewards to users
appropriately according to subjective factors. In addition,
rewards can be paid in any form as long as they are equal
in value. However, the conventional mechanisms limit how
rewards are paid, so they are applicable only for the network
service they target.

We propose and describe a novel incentive-rewarding mech-
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Fig. 3. Multiagent system with external evaluator.

anism that solves these problems using an external evaluator
and interactive learning agents. This mechanism is called
EMOTIVER (Everyone’s MOTivated by incentIVE Reward).
We also investigated ways of controlling rewards based on
user state and user contributions. We applied EMOTIVER and
reward control to user-position control, and a demonstration
of its validity is presented.

II. EMOTIVER-OUR INCENTIVE-REWARDING
MECHANISM-

EMOTIVER consists of two parts: an external evaluator
and interactive learning agents, both of which are described
in detail along with their functions in the following sections.

A. External evaluator

A reward-distribution problem can be considered as a multi-
agent system, which consists of multiple learning agents. In a
multiagent system, all agents share the rewards obtained from
the system state. Each agent selects a behavior (effort level [6])
that maximizes its own expected profit. However, to stabilize
the system at a high level of quality, each agent needs to obtain
information about the other agents and to choose its own
effort level according to that information. Thus, they require
complicated algorithms. Bochi et al. proposed an external
evaluator to solve this problem [7]. Figure 3 shows that the
external evaluator distributes rewards appropriately to agents
based on the total rewards obtained from the system state, the
behaviors of agents, and the reward-distribution function. Each
agent finds the behavior that will maximize its expected profit
by reinforcement learning. That is, the role of the external
evaluator is to steer the system to achieve high-quality results
by using rewards effectively.

B. Interactive learning agent

Even if we only apply the external evaluator stated in
the previous section to user-position control, all users are
agents and select the effort level that will maximize their
expected profit according to the rewards given by the external
evaluator. However, searching for the optimal effort level
incurs additional costs for users, and they are not always going
to find it. To solve this problem, we introduced an interactive
learning agent proposed by Lee et al. [8]. This agent first
chooses a selectable wireless service and suggests the user
to use it. The agent then receives satisfaction/dissatisfaction
responses for the service fed back by the user and finally
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Fig. 5. EMOTIVER.

finds the service that maximizes her/his satisfaction. Although
Lee et al. used this agent only for a context-aware service in
heterogeneous wireless networks, by applying to our incentive
mechanism, which is shown in Fig. 4, all users can easily find
their optimal effort level through simple interactions with their
learning agents.

C. System flowchart

Figure 5 presents a flowchart of EMOTIVER. The flow
includes six steps:

1) Interactive agent agi chooses the effort level for period t
Ei(t) from effort level table T , which lists all selectable
effort levels and proposes this to user usi.

2) usi behaves according to Ei(t) and produces result
Ri(t).

3) agi obtains Ri(t) and reports Ei(t) and Ri(t) to the
external evaluator.

4) usi obtains reward Wi(t) from the external evaluator
and feeds back her/his satisfaction level SATi(t) to agi

based on Wi(t) and cost Ci(t).
5) agi inputs the set of Ei(t), SATi(t), and user state Si(t)

in the learning algorithm and proposes the next effort
level Ei(t + 1) to usi according to the next user state
Si(t + 1).

6) The flow from step 2) to 5) is repeated until the optimal
effort level has been found, which usi can recognize
when agi does not change the proposed effort level
during a certain long period. After that, usi continues
to behave based on his/her optimal effort level.

Satisfaction level SATi(t) of usi is given as:

SATi(t) = Wi(t) − Ci(t) (1)
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where Wi(t) is the reward usi obtained, and Ci(t) is the cost
s/he incurred. This relationship is reliable because rewards
and costs can be converted into cash and because it has been
proved through a demonstration under limited conditions [2].
However, rewards can be paid in any form as long as they
are equal in value, i.e., cash, virtual currency, bandwidth,
etc. Thus, unlike conventional mechanisms, no predefinition
of cost and utility functions is required in EMOTIVER;
EMOTIVER supports subjective user factors such as costs and
types of satisfaction.

D. Reward distribution

The external evaluator manages the effort levels and the
results for all users. On the basis of these results, it distributes
rewards to users at the end of period t as follows.

1) The evaluated value is determined from the set of Ei(t)
and Ri(t):

Evali = f(Ei(t), Ri(t)). (2)

2) Based on the evaluated values of all users, the reward
for usi is determined.

Wi(t) = g(Eval1, Eval2, · · · , Evali, · · · ) (3)

where the total of rewards Wtotal(t) must be:

Wtotal(t) =
∑

i

Wi(t). (4)

We can control users’ effort levels and the system quality
by controlling these evaluation functions and the reward-
distribution function. In this paper, we used a function pro-
portional to Ri(t) [3]. That is, Eq.(2) and Eq.(3) can be
respectively represented as{

Evali = Ri(t)
Wi(t) = Wtotal × Evali∑

i
Evali

. (5)

III. SIMULATION

A. Simulation model

In the following subsections, we discuss the application of
EMOTIVER and our method of regulating rewards to user-
position control. We adopted a simple and versatile multiagent
simulation model because, in the future, we want to apply
our model to user-position controls in various wireless access
systems. Our method cannot easily be compared with the con-
ventional methods mentioned in Sect. I because, as explained
in the section, they do not have a mechanism that monitors the
satisfactions of users and that distributes rewards according to
subjective user factors. Therefore, we discuss the optimality
of our reward-distribution method.

1) User-position control: We modeled reassignment of
resources to new users using user-position control based on
the quality of radio channels explained in Sect. I [2], and Fig.
2. The simulation parameters are listed in Table I. The wireless
service areas are separated in 6-Mbps, 12-Mbps and 24-Mbps
areas, which correspond to poor, better, and best qualities

TABLE I
SIMULATION PARAMETERS.

No. of users 50
Transmission rate 6/12/24 Mbps

Service application 1 Mbps
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Fig. 6. Model of user-position control (reassignment to new users).

of channel. We simply calculated throughput from (through-
put)=(ratio of bandwidth utilization time)×(transmission rate).
That is, for example, a user in a 6-Mbps area requires twice
as long the bandwidth utilization time as a user in a 12-Mbps
area to obtain the same throughput. Figure 6 shows an example
of the user-position control we used in the simulation. When
user 2 moves from the 12-Mbps area to the 24-Mbps area and
user 3 moves from the 6-Mbps area to the 12-Mbps area, we
can reassign a spare bandwidth utilization time squeezed by
the movement to users 4 and 5, whose services have not been
accepted yet. Note that, to supress the increase of movement
cost, we limit our position control only to the movement to
the next better channel-area; users do not directly move from
the 6-Mbps area to the 24-Mbps area.

Figure 7 shows the timescale relationships between events,
incentive rewarding, and learning. One event is defined in the
following four steps.

1) The transmission rate and the service application for
each user are randomly determined. The system accepts
all users as long as the total bit rate does not exceed the
total available bandwidth.

2) The system asks all accepted users to move to the
better channel area, and each user responds to or ignores
the request according to the effort level determined by
her/his agent.

3) After the users have moved, step 2 is applied to new ac-
cepted users. However, the system does not ask already
moved users to move.

4) When there are no users who can move, the event is
completed.

Here, we define the effort level Ei(t) as ‘the response rate
for requests to move during one set (period t),’ which consists
of three levels, 0, 0.5, and 1. When a user selects a response
rate of 0.5, s/he responds an average of once to two requests
to move. We then define the result Ri(t) as ‘the number of
movements in one set’ or as ‘an increase in the amount of
bandwidth utilization time based on the amount of movement.’

2) Learning algorithm: As outlined in Fig. 7 and stated
in the previous section, one set consists of multiple events.
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learning.

During one set, the response rate is fixed. At every end point of
one set, the external evaluator distributes rewards to all users,
and all agents learn based on the set of response rate Ei(t),
user state Si(t), and user satisfaction SATi(t). The optimal
response rate for user usi has to be determined for each user
state; user usi can have different optimal response rates in each
state. In this simulation, whether or not a user can move is
considered to be the user state; in the channel areas of 6 or 12
Mbps, the user can move, while in the 24-Mbps area, the user
has no better channel area to which s/he can move. Therefore,
the Q value can be represented as Q(Ei(t), Si(t)). SATi(t) is
fed back from users and is used as a reinforcement signal for
learning. We used a “profit sharing” updating Q value based on
the accumulated value [9]. That is, Q(Ei(t), Si(t)) is updated
by Q(Ei(t), Si(t)) ← Q(Ei(t), Si(t)) + SATi(t). One set
consisted of 50 events, and the simulation time corresponded
to 60 sets. We used the ϵ-greedy method (ϵ = 0.2) in the first
20 sets and the greedy method in the rest sets to select the
next response rate, where Q value was reset to zero every 20
sets, because users should try all selectable response rates at
the beginning and then finally choose the optimal one.

We may reduce the consumed time by improving the
learning algorithm or by utilizing the history of user behaviors.
A better design for learning algorithms including a reduction
in consumed time was not part of the focus of this paper and
has been left for future work.

3) Service request model: We assumed multimedia services
that would require guaranteed constant bit rates. The total
average bit rate required from users was set to 24 Mbps,
meaning that all users were accepted when they were in
the area with 24 Mbps. In multimedia services that request
guaranteed bit rates, the utilities of accepted users can be
represented as 1 (=100 %), while the utilities of non-accepted
users are 0. Accepted users pay 1 to the system as a willingness
to payment (WTP) [10], which is added to the total reward
Wtotal.

The cost caused by their moving, on the other hand, can be
converted into a willingness to accept compensation (WTA)
[10]. That is, we can treat reward and cost on the same scale
and represent cost as the relative value of WTP=1. Although
the costs experienced by users may differ, we set them uniform
so as to analyze the relationship between user contribution and
cost.
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B. Simulation results

As described in Sect. III-A, the transmission rates and the
service applications of users were randomly determined in the
simulations. The results and cost for users were influenced by
these probabilistic factors, and the relationships are true even
in practical environments.

1) Expected response rate: Solid lines in Fig. 8 show the
expected response rate for the reward-distribution functions
defined in Eq. (5) and Sect. III-A1. The horizontal axis of
this figure indicates the cost, while the vertical axis indicates
the expected response rate per user. Here, we discuss how the
response rate finally chosen by users changes as the cost of
movement experienced by users increases or decreases. Rn(t)
indicates the expected response rate chosen when Ri(t) is ‘the
number of movements in one set’ and when a user usi is in
the 6 or 12 Mbps area (Si(t) is ‘movable’). When a user usi

is in the 24 Mbps area , all users chose Ei(t) = 0 because no
area had better channel quality than 24 Mbps (Si(t) is ‘un-
movable’). ‘Ideal’ indicates the maximum expected response
rate, which was found in all possible combinations of response
rates selected by users.

This figure shows that the reward distribution based on
Rn(t) achieved the maximum response rate Ei(t) = 1.
However, the expected response rate decreased rapidly at
Ci(t) ≥ 0.55 because the number of accepted users increased
by about 0.55 times in the simulation due to one user moving,
which means the average reward for one user was 0.55.
Moreover, compared with ‘Ideal’, the upper bound of cost
where the expected response rate > 0 was smaller.

2) Accepted users: The solid lines in Fig. 9 show the
average number of accepted users in the last 20 sets. The
horizontal axis of this figure indicates the cost, while the
vertical axis indicates the average number of accepted users.
Using this metric, we can evaluate how user-position control
with incentive rewards can improve system quality.

In Ci(t) ≤ 0.525, by using Rn(t), we could drastically
increase the number of accepted users, which demonstrates the
effectiveness of user-position control with incentive rewards.
The trends of Rn(t) and ‘Ideal’ were almost the same as those
in Fig. 8.
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Fig. 9. Increase in number of accepted users

IV. EXTENSION OF USER STATE

A. Simulation model

As shown in the previous section, a positive response rate
and an increase in the number of accepted users did not occur
when the cost was high. This is because users incur cost every
time they move, while the total reward increases when the
movement increases the amount of spare bandwidth enough to
accept a new user. Therefore, we should give more reward to
a user when s/he provides a larger amount of spare bandwidth.
To achieve it, we introduced another definition of the result ‘an
increase in the amount of bandwidth utilization time’ Rb(t).
Moreover, we modified the user state to the channel-area, 6, 12
or 24 Mbps. The reason for this modification is the movement
from 6 to 12 Mbps provides a larger amount of spare time
than that from 12 to 24 Mbps.

B. Results

1) Expected response rate: The broken lines in Fig. 8 show
the expected response rate for the reward-distribution based
on Rb(t). Rb(t)_6M, for example, indicates the expected
response rate chosen when the transmission rate is 6 Mbps.
We could not compare this performance with the ideal case
because the required calculation time for finding the optimal
combination of response rates astronomically increased as the
user state was extended. This figure shows that the expected
response rate for 6 Mbps was around 1 and was higher than
the ‘Ideal’ regarding movable or unmovable at Ci(t) ≥ 0.575.
Thus, by giving more rewards to users when they provided
large spare bandwidth, we can increase the upper-bound cost
where the expected effort level is more than 0.

2) Accepted users: The broken line in Fig. 9 shows that the
average number of accepted users increased by using Rb(t).

As this figure shows, this reward distribution increased
the upper-bound cost when an increase in the number of
accepted users occurred. However, in the low-cost region, the
increase in the number of accepted users was lower than
the ‘Ideal’. However, we conclude that Rb(t) is the most
suitable for the reward distribution in this evaluation because,
as shown in Fig. 9, the performance is not as sensitive to the
cost, making it the most attractive characteristic because, in

practical environments, the cost experienced by users cannot
be easily predicted.

V. CONCLUSION

We described a novel incentive-rewarding mechanism called
‘EMOTIVER,’ which uses an external evaluator and interactive
agents. These systems take subjective user factors into account
and motivate the users to contribute resources to the system.
We also investigated ways of controlling rewards. We applied
EMOTIVER with its control of rewards to user-position con-
trol and tested and validated its effectiveness. On the basis
of the simulation results, we concluded that the best way is
to distribute rewards based on an increase in the amount of
bandwidth and user state. This distribution gives more rewards
to users when they provide larger spare resources.

Future work includes building a testbed of a user-position
control system and an experimental evaluation of EMOTIVER
with people.
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