
Proceedings of APCC2008 copyright (c) 2008 IEICE 08 SB 0083

Fast Replica Allocation Method by Parallel
Calculation on DAPDNA-2

Hiroyuki ISHIKAWA∗, Sho SHIMIZU∗, Yutaka ARAKAWA∗, Naoaki YAMANAKA∗ and Kosuke SHIBA†
∗Department of Information and Computer Science, Faculty of Science and Technology, Keio University,

3–14–1 Hiyoshi, Kohoku-ku, Yokohama, 223–8522, Japan
Email: ishikawa@yamanaka.ics.keio.ac.jp

†IPFlex Inc. Kamiosaki 2–27–1, Sun felista Meguro 6F, Shinagawa-ku, Tokyo, 141–0021, Japan
Email: shiba@ipflex.com

Abstract—Replica placement problem is to select a subset
from a group of potential nodes to put replicas in Content
Distribution Network (CDN). It is derived from the set cover
problem which is known to be NP-hard. So it is difficult
to calculate the large-scale replica placement problem on a
program counter-based processor. Several greedy algorithms
are proposed in order to decrease calculation time. However,
it was proved mathematically that no greedy algorithm can
obtain the optimal solution.

This paper proposes a fast calculation method of the
replica placement problem, which is implemented on recon-
figurable processor DAPDNA-2 of IPFlex Inc. Our proposed
method divides the combination optimally and performs
pipeline operation. Beeler’s algorithm can calculate all com-
binations in ascending order but it has data dependence. It’s
difficult to calculate any pattern because each data increases
irregularly. In order to solve this problem, we propose the
new algorithm that generates any order pattern. In addition,
the optimal number of partitions depends on the number of
combinations and calculation clocks of Beeler’s algorithm.
In order to solve this problem, we think about the optimal
division number in theory.

While the time complexity of conventional method is
proportional to the number of combinations, that of proposed
method is proportional to the square root of the number of
combinations. Experimental results show that the proposed
algorithm reduces the execution time by 40 times compared
to Intel Pentium 4 (2.8GHz).

I. INTRODUCTION

CDN has been used to deliver the contents from the
origin server to geographically distributed nodes, which
send contents to the clients. In CDN, it’s important to
reduce the load on the origin server and network. In order
to deliver contents efficiently, CDN copies contents and
places replicas on several servers. The placement decision
has to be made on per content and be made dynamically
according to user requests.

One of the decision problems is replica placement,
which selects a subset from a group of potential nodes
to put replicas. Replica placement is usually done by a
system administrator and many CDN service providers
tend to acquire as many replication sites as possible.

The distance between two nodes is used as a metric for
quality assurance in CDN. A request must be answered
by a server within the distance specified by the request
because all clients want to download contents during the
allotted time period. Every node knows the nearest server
that has the replica and the request takes the shortest
path to reach the server. The goal is to find a replica

placement that satisfies all requests without violating any
range constraint, and minimize the update and storage cost
at the same time. If storage cost is 1 for all nodes, the
number of replicas must be minimized.

Replica placement problem is derived from the set cover
problem which is known to be NP-hard [1]. Therefore,
calculation time increases rapidly when the network scale
is large. Several greedy algorithms are proposed in order
to decrease calculation time [2]. However, it was proved
mathematically that no greedy algorithm can obtain the
optimal solution.

In this paper, we propose a fast calculation method
of the set cover problem, which is implemented on re-
configurable processor DAPDNA-2 of IPFlex Inc [3].
DAPDNA-2 consists of DAP (Digital Application Proces-
sor), a high-performance RISC core, and DNA (Digital
Network Architecture), a dynamically reconfigurable two-
dimensional matrix. The DNA is embedded in an array
of 376 PE (Processing Elements), which are comprised of
computation units, memory, synchronizers, and counters.
The PE Matrix circuitry can be reconfigured freely into
the structure, which is suitable for application on demand.

It is difficult to calculate the large-scale replica place-
ment problem on a program counter-based processor. Our
proposed algorithm divides the combination optimally and
performs pipeline operation. While the time complexity
of conventional method is O(nCk), the time complexity
of proposed algorithm is O(

√
nCk). Experimental results

show that the proposed algorithm reduces the execution
time by 40 times compared to Intel Pentium 4 (2.8GHz).

The rest of this paper is organized as follows. Section
II denotes the related work of this research about replica
placement problem and combination algorithm. In Section
III, we propose a fast calculation method of the replica
placement problem which divides all combinations opti-
mally and performs pipeline operation on DAPDNA-2.
Section IV evaluates the performance of our implemen-
tation. Finally, we conclude this paper in Section V.

II. RELATED WORKS

The network is represented by an undirected graph G =
(V,E), where V is the set of servers, and E ⊆ V ×
V denotes the set of network links among the servers.
Each link (u, v) ∈ E is associated with a cost d(u, v) that
denotes the communication cost of the link between two
servers u, v. We assume that the graph is connected, so



Proceedings of APCC2008 copyright (c) 2008 IEICE 08 SB 0083

02

7

543

1

6

10

76
8

65

310

93

Origin server r

Cover area of Replica server 5

Cover area of Replica server 1 Cover area of Origin server 0

Storage cost : S(R) = 2

Update cost : U(R) = d(1, 0) + d(5, 0) = 26

Fig. 1. Origin server and Replica servers {1, 5} can cover all nodes
when the quality requirement is 8.

that one server can connect to any other server via a path.
We define the communication cost of a path as the sum
of the communication cost of the links along the path.
Because we assume that each server knows the nearest
replica, we define d(u, v) between two servers u, v to be
the communication cost of the shortest path between them.
Every server u has a storage cost s(u), that denotes the
cost to put a replica on server u. The storage cost on
different servers may be different.

Figure 1 shows the illustration of Replica Placement.
The numbers in the circles are server indices between 0
and n − 1, where n is the total number of servers. The
number on a link is the communication cost of the link.

Each server in the network services multiple clients,
although we don’t illustrate clients in Figure 1. A client
sends its requests to its associeted server, then the server
processes the request. If the client’s requests can be served
by the server, i.e., the local server has the requested
data, the requests will be processed locally. Otherwise,
the request will be directed to the nearest server that has
the replica. In addition, because the communication cost
from the clients to servers doesn’t affect the replication
decision, we ignore the commnication cost from clients to
servers.

There is the origin server r in Figure 1. Without loss of
generality, we assume that server 0 is the origin server.
Initially, only the origin server has the data. A replica
server is a server that has a copy of the original data.
A replication strategy, R ⊆ V − {r}, is a set of replica
servers.

We use the replication cost to evaluate replication strate-
gies. The replication cost T (R) of a replication strategy
R is defined as the sum of the storage cost S(R) and the
update cost U(R).

T (R) = S(R) + U(R) (1)

Storage cost: The storage cost of a replication strategy R

is the sum of all storage cost of the replica servers.

S(R) =
∑
v∈R

s(v) (2)

Update cost: In order to maintain data consistency, the
origin server r issues update requests to every replica
server. We assume that there is an update distribution
tree T , which connects all servers in the network. For
example, we use a shortest path tree rooted at the origin
server as the update distribution tree. The origin server
r multicasts update requests through links on this tree
until all replica servers in R receive the update requests.
Every node receives update requests from its parent and
relays these requests to its children according to the update
distribution tree.

Let p(v) be the parent of node v in the update distri-
bution tree, and Tv be the subtree rooted at node v. If
Tv ∩ R 6= φ, the link (v, p(v)) participates the update
multicast. As a result, the update cost is the sum of
the communication costs from these links (v, p(v)). For
example, if the replication strategy R is {1, 5} in Figure
1, then the update cost is 11 + 15 = 26.

U(R) =
∑

v 6=r,Tv∩R 6=φ

d(v, p(v)) (3)

Every server u has a service quality requirement q(u).
The requirement mandates that all requests generated by
u will be served by a server within q(u) communication
cost. We assume that every server in the network knows
the nearest replica server from itself. If a request is served
by the nearest replica server within q(u), the request is
satisfied, otherwise, the request is violated. If all requests
in the system are satisfied, the replication strategy is called
feasible.

min
w∈R∪r

d(v, w) ≤ q(v) (4)

The replica placement problem is to find the feasible repli-
cation strategy such that the replication cost in Equation
(1) is minimized [4]. For example, we assume that the
quality requirement is 8 for all servers and the replication
strategy is {1, 5} in Figure 1. We can verify that the
replication strategy together with origin server can satisfy
all requests within the network. The replication strategy
{1, 5} covers all nodes in Figure 1. Replica placement
problem is derived from the set cover problem which
is known to be NP-hard. The difinition of the set cover
problem is as follows.

Minimum Weight Set Cover Problem: Let U be the
universal set and S be the family of U . The solution is sub-
family S such that the weight is minimized and

∪
S∈S S =

U is satisfied.
Replica placement problem is NP-hard because Mini-

mum Weight Set Cover Problem is known to be NP-hard.
Some greedy algorithms have been proposed.

David S.Johnson proposed the greedy algorithm for
Minimum Weight Set Cover Problem [5]. This algorithm
is a straightforward heuristic, requiring time proportional
to n. Several greedy algorithms have been proposed in
order to decrease calculation time [2]. However, note that
no greedy algorithm can obtain the optimal solution.



Proceedings of APCC2008 copyright (c) 2008 IEICE 08 SB 0083

Data1 (000111)

Data6 (010101)

Data11 (100011)

Data16 (101100)
1 clock

Beeler’s algorithm

on DAPDNA-2

Fig. 2. First data of each group are entered per clock cycle by pipeline
operation. DNA matrix outputs Data2, Data7, Data12 and Data17, which
are the next input data.

III. PROPOSED METHOD

Combinatorial algorithm can be applied to the problem
which is derived from the set cover problem, such as
replica placement problem. The calculation time of replica
placement problem increases rapidly when the network
scale is large. We propose the new method that generates
all combinations fast because no greedy algorithm can
obtain the optimal solution. Our proposed method divides
the combination into different groups which are executed
in parallel. First data of each group are entered per clock
cycle by pipeline operation. We implemented Beeler’s al-
gorithm, which can generate all combinations in ascending
order on DAPDNA-2.

Figure 2 shows the pipeline operation when 6C3 is
divided into 4 groups. 1st, 6th, 11th and 16th data are input
data because 20 combinations are divided into 4 groups.
DNA matrix outputs Data2, Data7, Data12 and Data17,
which are the next input data in Figure 2. The result of
the last group get delayed in 3 clocks compared with the
one of the first group. The whole execution time is about
quarter compared with original execution time.

There are two problems that need to be solved. First,
how can we calculate the first data of each group when
combination is divided into different groups? Beeler’s
algorithm can generate all combinations in ascending order
but it has data dependence. It’s difficult to calculate any
order pattern because each data increases irregularly. In
order to solve this problem, we propose the new algorithm
that generates any order pattern.

Second, what is the optimal division number which
minimizes whole calculation clocks? The more division
number increases, the more whole calculation clocks de-
creases. However, whole calculation clocks increases the
other way around when the division number exceeds a
certain value because the results get delayed in a clock
compared with the one of previous group. The optimal
division number depends on the number of combinations
and calculation clocks of Beeler’s algorithm. In order to
solve this problem, we think about the optimal division
number in theory.

A. Beeler’s algorithm and Any-order pattern algorithm

M.Beeler, R.W.Gosper, R.Schroppel proposed an al-
gorithm that generates all combinations picking k out-
comes from n possibilities [6]. These combinations can
be expressed in n-digit binary form. For example, 010110
represents (2, 3, 5) when n = 6. Combinations can be
ordered in this way. (2, 3, 5) < (2, 4, 5) because 010110 <
011010. Beeler’s algorithm can generate all combinations

from 000111 to 111000 in order. The details of the
algorithm is as follows.

1) Let S1 be what all bits are unset except for the least
significant 1 of a combination X .

2) R = X + S1

3) Let S2 be what all bits are unset except for least
significant 1 of R.

4) S3 = (S2/S1) >> 1 − 1
5) Y = R|S3 is next to X .

When n = 6, k = 3, X = 001110, for example, Y is
calculated as follows.

1) S1 = 000010
2) R = X + S1 = 010000
3) S2 = 010000
4) S3 = (S2/S1) >> 1 − 1 = 001000 >> 1 − 1 =

000011
5) Y = R|S3 = 010011
We propose the new algorithm that generates any order

pattern in combinations which are sorted in ascending
order. Generally, the following equation is true.

nCk =
n−1∑

i=k−1

iCk−1 (5)

If you want to get m-th pattern, find the smallest x1 which
satisfies the following inequation.

x1∑
i=k−1

iCk−1 ≥ m (k − 1 ≤ x1 ≤ n − 1) (6)

x1Ck−1 means the patterns whose most significant one is
x1 bit and there are k − 1 ones between 0 and x1 − 1
because there are k ones in total. Hence, x1 bit of m-th
pattern is 1. m-th pattern corresponds m−

∑x1−1
i=k−1 iCk−1-

th in x1Ck−1. Replace m as follows.

m → m −
x1−1∑

i=k−1

iCk−1

Next, find the smallest x2 which satisfies the following
inequation.

x2∑
i=k−2

iCk−2 ≥ m (x2 ≤ x1 − 1)

x2Ck−2 means the patterns whose most significant one is
x2 bit and there are k−2 ones between 0 and x2−1. Hence,
x2 bit of the pattern is 1. x1, x2, · · · , xk can be obtained
by repeating k times in a similar way. Set corresponding
bit to 1, and you can get the m-th pattern.

For example, 6th pattern (m = 6) in 6C3 can be
obtained as follows.

6C3 =2 C2 +3 C2 +4 C2 +5 C2 = 1 + 3 + 6 + 10

Apply the equation (5) to 4C2 because 4C2 includes 6th
pattern. Hence, x1 = 4,m → 2.

4C2 =1 C1 +2 C1 +3 C1 = 1 + 2 + 3

Apply the equation (5) to 2C1 because 2C1 includes 2nd
pattern. Hence, x2 = 2,m → 1.

2C1 =0 C0 +1 C0 = 1 + 1



Proceedings of APCC2008 copyright (c) 2008 IEICE 08 SB 0083

1st pattern corresponds 0C0. Hence, x3 = 0. Set corre-
sponding bit to 1, and the 6th pattern can be obtained,
010101.

B. Optimal division number

Let a be the number of clocks to calculate any order
pattern and b be the number of clocks to execute Beeler’s
algorithm. b (nCk − 1) clocks are required to generate all
combinations picking k outcomes from n possibilities.
iCj is the number of j-selections from i elements, where
i, j are the nonnegative integer. When we divide the
combination into 2 groups, a + b(nCk−1)

2 + 1 clocks are
required. When we divide the combination into 3 groups,
2a + b(nCk−1)

3 + 2 clocks are required. When we divide
the combination into x groups in a similar way, y clocks
are required as follows.

y = (x − 1)a +
b(nCk − 1)

x
+ x − 1

=
b(nCk − 1)

x
+ (a + 1)x − a − 1

According to a relationship between arithmetic mean and
geometric mean,

y =
b(nCk − 1)

x
+ (a + 1)x − a − 1

≥ 2

√
b(nCk − 1)

x
(a + 1)x − a − 1

= 2
√

b(nCk − 1)(a + 1) − a − 1

We have equality if and only if b(nCk−1)
x = (a + 1)x.

Hence

x =

√
b(nCk − 1)

a + 1
(7)

This is the optimal division number.

C. Implementation on DAPDNA-2

Let n be the number of nodes except for the origin
server and k(≤ n) be the number of replicas. In our
implementation, n ≤ 32 because one word is 32-bit length
in PE. For example, we generate all combinations from
0000011 to 1100000 when n = 7, k = 2. Each node is
represented by 32-bit data. Let i-th bit be 1 if this node
covers node i. In expression 4, v, w-th bit of node w is 1
because w covers v. If OR between 2 replica and the origin
server equals 1111111, the replication strategy covers all
nodes. For example, the replication strategy is node {1,
5} when the combination is 0010001. Now, the following
equations are true in Figure 1.

d(2, 0) ≤ q(2), d(3, 0) ≤ q(3), d(7, 0) ≤ q(7)
d(2, 1) ≤ q(2), d(4, 5) ≤ q(4), d(6, 5) ≤ q(6)

Node 0 represents 1000110, node 1 represents 0000011,
and node 5 represents 0111000. This replication strategy
covers all nodes because OR between 3 data equals
1111111. If some replication strategies covers all nodes,
we choose the minimum-cost combination.

After calculating the optimal division number, our pro-
posed algorithm consists of following 3 processes.

1) Calculate m-th pattern according to the optimal
division number.

2) Execute Beeler’s algorithm.
3) Using corresponding cover data, check that all nodes

can be covered.

The result of process (1) which is executed by DAP is
stored in main memory. DNA reads this result from main
memory and execute process (2), (3) by pipeline operation.

IV. PERFORMANCE EVALUATION

In this section, we compare the execution time of
DAPDNA-2 (166MHz) with that of Pentium 4 (2.8GHz).
Let k be the number of replicas and n be the number of
nodes except for the origin server and d be the number of
partitions.

Figure 3 shows the execution time to generate all com-
binations when k = 8. Black plots represent conventional
method on Pentium 4, and white plots represent proposed
method on DAPDNA-2. Circle plots represent theoretical
execution time, and square plots represent experimental
execution time. Figure 3 has a margin of error between
theoretical and experimental time but increasing tendency
is almost the same. In the proposed method, the execution
time increase slowly as n increases because DAPDNA-
2 calculates in parallel using a pipeline operation. When
n = 30, DAPDNA-2 reduces the execution time by 40
times compared to Pentium 4.

Figure 4 shows the execution time of DAPDNA-2
versus d when k = 8. Cross plots represent 25 nodes
and triangular plots represent 27 nodes. Optimal division
number is calculated by expression 7. d = 328 when
n = 25 and d = 472 when n = 27. The execution time
reduces with increasing of d but increases when d is larger
than the optimal number. This is because data are output
per clock cycle.

Fig. 3. DAPDNA-2 can reduce the execution time by 40 times compared
to Pentium 4 when the number of nodes is 30.



Proceedings of APCC2008 copyright (c) 2008 IEICE 08 SB 0083

Fig. 4. Theoretical execution time versus the number of partitions

V. CONCLUSION

In order to obtain the optimal solution of Replica Place-
ment in CDN, we have proposed a fast calculation method
with reconfigurable processor DAPDNA-2 of IPFlex Inc.
Our proposed method divides the combination optimally
and performs pipeline operation. We have proposed the
new algorithm that generates any order pattern in combi-
nations which are sorted in ascending order and derived
the optimal division number in theory. While the time
complexity of conventional method is O(nCk), the time
complexity of proposed algorithm is O(

√
nCk).

Experimental results have showed that the execution
time of the proposed algorithm increases slowly as n
increases because DAPDNA-2 calculates in parallel using
a pipeline operation. When n = 30, DAPDNA-2 reduces
the execution time by 40 times compared to Pentium 4.

ACKNOWLEDGMENT

The authors would like to thank Tomomi Sato and
other staff for helping with implementation on DAPDNA-2
(IPFlex Inc). This work is supported in part by a Grant-
in-Aid for the Global Center of Excellence for high-Level
Global Cooperation for Leading-Edge Platform on Access
Spaces from the Ministry of Education, Culture, Sport,
Science, and Technology in Japan.

REFERENCES

[1] M.R.Garey, D.S.Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[2] Hsiangkai Wang, Pangfeng Liu, Jan-Jan Wu, “A QoS-Aware
Heuristic Algorithm for Replica Placement,” Grid Computing 7th
IEEE/ACM International Conference, pp.96-103, September 2006.

[3] IPFlex Inc. (http://www.ipflex.com)
[4] Xueyan Tang, Jianliang Xu, “QoS-Aware Replica Placement for

Content Distribution,” IEEE Transactions on parallel and distributed
systems, vol.16, No.10, pp.921-932, October 2005.

[5] David S.Johnson, “Approximation algorithms for combinatorial
problems,” Journal of Computer and System Science, pp.256-278,
1974.

[6] M.Beeler, R.W.Gosper, R.Schroeppel, HAKMEM
(http://www.inwap.com/pdp10/hbaker/hakmem/hakmem.html)


