
An integrated security testing framework for Secure
Software Development Life Cycle

Yuan-Hsin Tung*, Sheng-Chen Lo, Jen-Feng Shih, and Hung-Fu Lin

Telecommunication Lab., Chunghwa Telecom Co., Ltd., Taiwan, ROC
yhdong@cht.com.tw, loshengchen@cht.com.tw, jfshih@cht.com.tw, hflin@cht.com.tw

Abstract—Hundreds of vulnerabilities and security defects
are disclosed by hackers, developers, and users. The better way
to improve software security is to enhance security process into
SDLC processes. To keep software secure, security enhancement
of the SDLC process involves lots of practices and activities to
achieve goal of security. However, how to adopt these activities
well to improve software security is an important problem. In
this paper, we propose an integrated security testing framework
for secure software development life cycle. In our proposed
framework, we apply security activities and practices of SSDLC
to generate security guidelines. Furthermore, we integrate
security testing tools as a platform to provide testing service and
converge testing results of tools to improve accurate of test. To
evaluate our proposed framework, we construct the prototype
system by referring phases of framework. Our system can
integrate various security testing tools and support secure
activities in each phase of SSDLC. We had applied our system to
at least 50 software developing projects. The results indicate that
our prototype system can provide quality and stable service.

Keywords— SSDLC, security testing tool, vulnerability analysis,
integrated framework

I. INTRODUCTION

In recent years, because of various malicious code and
vulnerabilities, system security is becoming a major problem of
software development. Hundreds of vulnerabilities and security
defects are disclosed by hackers, developers, and users. For
developing any software, security is an important thing to
consider. Threats use defects and vulnerabilities of system and
cause risk to damage a system. To fix it, there are numerous
security tools, including commercial tools and open source
software, are developed for detecting security vulnerabilities.
However, defects are addressed in each phase of software
development life cycle (SDLC), requirements phase, designing
phase, developing phase, and testing phase. And there is no
integrated tool can detect all defects in SDLC. As usual,
developers are preceding their work without considering the
security defects and vulnerabilities. Large number of
vulnerabilities can be traced in software that are because of bad
analysis, bad design, and poor development method. Therefore,
better way to improve software security is to enhance security
process into SDLC processes.

Software development life cycle, SDLC, is the process for
developing software product. It is a structured way of building
software applications. Most organizations have a process for
developing software customized based on the organizations
requirement and framework followed by organization. Secure

Software Development Life Cycle, SSDLC, stresses on
incorporating security into the software development life cycle.
Secure software is not easily to achieve and it is demonstrated
that improvements to the software development process can
help to minimize the number of vulnerabilities in developing
software[22]. However, SSDLC process involves lots of
security practices and activities to achieve goal of security.
How to adopt these activities well to improve software security
is an important problem.

Many security testing tools[18] are used to detect security
defects and vulnerabilities. In this paper, we propose an
integrated security testing framework for secure software
development life cycle. In our proposed framework, we apply
security activities and practices of SSDLC to generate security
guidelines and improve security software. In addition, we
integrate security testing tools as a platform to provide testing
service. There are four main phases in our proposed
framework. First, we define security guidelines to meet
security goal by analyzing enterprise’s security requirements of
each phases of SSDLC. Then, we construct security test cases
according to security guideline. Third, to execute test cases, we
integrate various security testing tools and adopt API to
execute test automatically. Final, to converge testing results
from different testing tools, we propose meta-vulnerability data
model to describe the features of vulnerability. And we
converge testing results of tools to improve accurate of test. To
achieve secure purpose of software development life cycle, we
construct the prototype system by referring the proposed
framework. Our system can integrate various security testing
tools and support secure activities in each phase of SSDLC.
We had applied our system to 50 software developing projects
and at least 200 programmers were used in period of six
months. The results indicate that our prototype system can
provide quality and stable service.

II. RELATED WORK

To improve the security of software application, security
models in the software development life cycle[13][19][20][21]
are proposed in decades, such as MS DLC, BSIMM, and
OWASPs SAMM. In this paper, we adopt security models to
our proposed framework. In our framework, we refer the
activities of these models to generate our security guidelines.

The Microsoft Security Development Lifecycle (Microsoft
SDL)[9][10] is a software development process used and
proposed by Microsoft to reduce software maintenance costs
and increase reliability of software concerning software

© Copyright IEICE – The 18th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2016

security related bugs. Microsoft's methodology is maybe one of
the most used in the commercial area. Microsoft SDL involves
modifying a software development organization’s processes by
integrating measures that lead to improved software security.
Fig.1 shows the key activities in Microsoft SDL[12].

Fig. 1. The Microsoft Security Development Lifecycle[9]

BSIMM[11] was started from a study of analyzing several
leading software development companies. BSIMM aims at
developing a maturity model, which would imply to change the
way organizations work. It is understood that this does not
happen quickly and therefore this framework provides a way to
assess the state of organizations, define which changes should
be prioritized and demonstrate progress.

The Open Web Application Security Project (OWASP)[14]
is an online community which creates freely-available articles,
methodologies, documentation, tools, and technologies in the
field of web application security. In Fig.2, the OWASP
Software Assurance Maturity Model (SAMM)[13] is a usable
framework to help organizations formulate and implement a
strategy for application security to the specific business risks.

Fig. 2. A structure overview of SAMM

In this paper, we identify security requirements by referring
these SSDLC models. We proposed the integrated security
testing framework and identified security practices and
activities of SSDLC.

III. AN OVERVIEW OF INTEGRATED SECURITY TESTING

FRAMEWORK

In the software development life cycle, security plays a
very important role, and software security testing is an
important means to achieve goal of SSDLC. In this paper, we
propose an integrated security testing framework for SSDLC.
According to our proposed framework, we can easily develop
security test cases and integrate security testing tools to support
security activities of SSDLC.

As shown in Fig.3, our integrated security testing
framework for SSDLC contains four main phases and nine
steps. In phase 1, requirement development, we analyze the
activities and practices of SSDLC and develop corresponding
guideline for security issue. By leveraging definition of
SSDLC, we can construct security guideline by identifying the

security issue we need to implement. In phase 2, test case
construction, we design test case and test plan to meet security
guideline of SSDLC. In phase 3, tool integration, we build up a
common interface to integrate different security testing tools
and test will be executed by using corresponding automatic
testing tools. In phase 4, result analysis, we proposed the meta-
vulnerability data model to represent testing results from
various testing tools and enhance testing results analysis. Our
framework can easily transform activities of SSDLC into
physical test cases and execute them.

Security
Requirement

Analysis

Security Risk
Assessment

Security Guideline
Development

Test Case
Construction

Test Case
Management

Security Tester
Integration

Security Tester
Execution

Data Modeling

Result Analysis

Test Case

Test Case
Base Test ReportSecurity

Guideline

Fig. 3. An Overview of Integrated Security Testing Framework

A. Requirement Development Phase

Security requirement in development life cycle is an
important step to analyze the security requirement of enterprise
and establish security guideline. According to previous SSDLC
models, we can establish security guidelines by referring
SSDLC practices. To develop security guideline, we analyze
security requirement which consists of three steps:

1. Security requirement analysis: We can identify security
practices and activities as security requirements. Security
requirements are security issues that should be considered for
building security software. We have to enumerate all potential
security issues in requirements phase and design phase.
Defining and integrating security requirements in early SSDLC
phase can help it easier to identify key security issues and
minimize threats in later phases, design, implementation,
verification, and release. The STRIDE[15][16] threat list is an
example of security issues. It is a system developed practice of
Microsoft DLC for thinking about computer security threats.
We can identify security issues with STRIDE by classifying
attacker goals, such as spoofing, tampering, repudiation, and
denial of service.

2. Security risk assessment: In this step, we evaluate all
identified security issues by security risk assessment. There are
many defects analysis and threat modeling approach to perform
security risk assessment. Applying a structured approach to
threat scenarios helps enterprise more effectively and less
expensively to identify security issues, determine risks from
those threats, and establish appropriate mitigations, such as
DREAD model[4]. DREAD model is a classification scheme
for quantifying, comparing and prioritizing the amount of risk
presented by each evaluated threat.

3. Security guideline development: In this step, we develop
candidate security issues and transform them into security
guidelines and technique specifications. Security guidelines are

a collection of practices checklist that may contain code style,
security specification, and security function. In system
developing, programmer should validate all data on a trusted
system, and validate expected data types, data range, data
length, and hazardous characters.

B. Test Case Construction Phase

In test case construction phase, we generate test case
according to security guideline. In addition, we propose the test
case management mechanism to manage test cases.

1. Test Case Construction: In test case construction, we
generate test case according to security requirements and
security guideline. Test engineers design corresponding test
case according to different requirement specs. A test plan is a
document detailing a systematic approach to testing a system
such as a machine or software. The plan typically contains a
detailed understanding of the eventual workflow. A test script
in software testing is a set of instructions that will be performed
on the system under test to test that the system functions as
expected. The test script can be executed automatically by
testing tools, called testers. 2. Test case management: In
addition, we store test case into the test case base. Based on
executing tools, there are four types of test cases, Automatic,
Semi-Automatic, Manual, and Code Review. Each case
belongs to specific security guideline. A security guideline may
contains one or more test cases. With test case management
system, we can store test scripts and reuse test scripts
automatically. Then, we can execute test case with security
testing tools.

C. Tool Integration Phase

1. Security Tester Integration: To execute test case
automatically, we integrate security testing tool with our
proposed integrated security testing framework. Because of
various interfaces of security testing tools, we applied TaaS
technique[17] to integrate testing tools. We define a common
application programming interface (API) to perform testers
since each testing tools can easily follow. Then we can control
and access testing tools by API. There are controller and testers
in our framework. The automated test tool, called tester
controlled by controller without human intervention, will be
conducted to execute test cases. We can deploy them in cloud
environment and provide test as a service. Automated testers
are useful in situations where the test is to be executed by
scheduling.

2. Security Tester Execution: In our proposed framework,
we can execute test case automatically after security tester
integration. In this phase, we use open API to drive tester to
perform test case. There are controller and testers in our
framework. The automated test tool, called tester controlled by
controller without human intervention, will be conducted to
execute test cases. Since testers are easily repeatable, and often
faster, we can deploy them in cloud environment and provide
test as a service by API. Automated testers are useful in
situations where the test is to be executed by scheduling.

D. Result Analysis Phase

1. Fusion Data Modeling: Security testing tools have its’
own testing results and vulnerability formats. Static testing
often checks syntax and data flow as static program analysis.
Dynamic testing detects the vulnerabilities by actually
performing the attack when the program is running. To fuse
various testing results, we define a meta-data model to
represent vulnerabilities. We divide testing results into three
main parts: Project Detail, Scan Configuration, and Detected
Vulnerability. We can present and compare testing results with
our proposed model and analyze them in next step.

2. Testing Result Analysis: Base on proposed data model,
we can compare testing results from different testing sources at
same baseline. For same vulnerability, we can compare the
testing report from different testing source. It is helpful to
developer to fix the bug in different dimensions

IV. SYSTEM DSIGN AND IMPLEMENTATION

To support activities of SSDLC, we integrated three types
of security testing tools into our prototype system, source code
analyzer, web application scanner, and host vulnerability
scanner. Source code analyzer, such as Fortify SCA[5], and
Checkmarx Code Analysis[3], is used to support code review
in the implementation phase of SSDLC. Web application
scanner, such as HP WebInspect[6], Acunetix Web
Vulnerability Scanner[2], and IBM AppScan[7], is used to
support verification in the testing phase. Host vulnerability
scanner, such as MVM[8] and nessus, is used to support host
scanning in the deployed environment of operation phase. As
shown in Fig.4, there are five main modules in our system, user
interface, controller, tester, repository, and result analyzer.
Controller can receive test tasks and dispatch test tasks to
testers. We design the common API protocol to control and
launch the testers. Tester can execute test cases according to
assignment of controller. In our prototype system, we integrate
three testers. The pre-defined test cases are generated according
our proposed framework. The Repository stores Testing
Specification, Test Case DB, and Test Report. Final, we can
fuse testing results and compare the testing results from
different sources.

Controller Tester

User Interface

Test Case & Result Repository

Security
Guideline

Controller

Source Code
Analyzer

Web
Application

Scanner

DUT

Source Code

Web Application

Server Host

Integrated API
Host

Vulnerability
Scanner

Test Case Test Report

Programmers &Users

Result Analyzer

Result Analyzer

Fig. 4. Implementation architecture of prototype system

Through user interface, users are allowed to interactively
and easily execute security testing tools under period of
software development life cycle. In Fig.5, user select language

type and language version of source code, and upload source
files. Controller drives source code analyzer with common API.
And the test is executed and testing result is store in repository
after finish testing. Based on our system, we can converge
various testing results as a integrated report. As shown in Fig.6,
the integrated result is helpful for developers to analyze
security issues of software. Developers can easily identify the
security issues according to statistics of testing reports. We had
applied our system to 50 software developing projects and at
least 200 programmers were used in period of six months. The
results indicate that our prototype system can provide quality
and stable service.

Fig. 5. User Interface of Integrated Security Tester

Fig. 6. Result Analysis of Testing Reports

V. CONCLUSION

In recent years, SSDLC is widely discussed in developing
secure software. There are many activities and practices are
proposed to achieve security goals of enterprise. In this paper,
we proposed an integrated security testing framework for
secure software development life cycle. We adopt security
activities and practices of SSDLC to generate security
guidelines and security test cases. We integrate security testing
tools to execute test cases automatically with our proposed
framework. To experiment our proposed framework, we
construct the prototype system by referring the proposed
framework. The results indicate that our prototype system can
provide quality and stable service. The prototype system show
that our approach is efficient for perform security issue under
software development.

In the future studies, we will continuously add features to
our proposed framework for the purpose of improving of
software security. Furthermore, we will analyze in depth about

developing behavior of programmers and effectivity of security
tools usage. Meanwhile we will also develop new evaluation
techniques in testing results integration by applying big data
analysis approach.

REFERENCES
[1] "Apache JMeter", http://en.wikipedia.org/wiki/Apache_JMeter.

[2] "Acunetix Web Vulnerability Scanner",
http://www.acunetix.com/vulnerability-scanner/ [Last accessed 1 May,
2016]

[3] "Checkmarx - Code Analysis", https://www.checkmarx.com/[Last
accessed 1 May, 2016]

[4] "DREAD (risk assessment model)",
https://en.wikipedia.org/wiki/DREAD_(risk_assessment_model)/ [Last
accessed 1 May, 2016]

[5] "HP Fortify, Static Code Analyzer",
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/
[Last accessed 1 May, 2016]

[6] "HP WebInspect", http://www8.hp.com/us/en/software-
solutions/webinspect-dynamic-analysis-dast/, [Last accessed 1 May,
2016]

[7] "IBM AppScan", http://www-03.ibm.com/software/products/en/appscan,
[Last accessed 1 May, 2016]

[8] "McAfee Vulnerability Manager",
http://www.mcafee.com/tw/products/vulnerability-manager-
databases.aspx [Last accessed 1 May, 2016]

[9] "Microsoft Security Development Lifecycle",
https://www.microsoft.com/en-us/sdl/ [Last accessed 1 May, 2016]

[10] "Microsoft DLC, wikipedia",
https://en.wikipedia.org/wiki/Microsoft_Security_Development_Lifecyc
le [Last accessed 1 May, 2016]

[11] McGraw, G., & Viega, J. (2001). Building Secure Software. Addison
Wesley.

[12] Microsoft DLC for Agile, https://www.microsoft.com/en-
us/SDL/Discover/sdlagile.aspx [Last accessed 1 May, 2016]

[13] OWASP SAMM, Software Assurance Maturity Model - A guide to
building security into software development - version 1.1. OWASP.

[14] "OWASP", https://en.wikipedia.org/wiki/OWASP. [Last accessed 1
May, 2016]

[15] "STRIDE Threat Model", https://msdn.microsoft.com/en-
us/library/ee823878(v=cs.20).aspx[Last accessed 1 May, 2016]

[16] "STRIDE (security)", https://en.wikipedia.org/wiki/STRIDE_(security)
[Last accessed 1 May, 2016]

[17] Tung, Yuan-Hsin, Chen-Chiu Lin, and Hwai-Ling Shan. "Test as a
Service: A framework for Web security TaaS service in cloud
environment." Service Oriented System Engineering (SOSE), 2014
IEEE 8th International Symposium on. IEEE, 2014.

[18] Tung, Yuan-Hsin, Shian-Shyong Tseng, Jen-Feng Shih, and Hwai-Ling
Shan. "A cost-effective approach to evaluating security vulnerability
scanner." Network Operations and Management Symposium
(APNOMS), 2013 15th Asia-Pacific. IEEE, 2013.

[19] Tondel, I. A., Jaatun, M. G., & Meland, P. H. (2008). Security
Requirements for the Rest of Us: A Survey. IEEE Software , 20-27.

[20] Teodoro, Nuno, and Carlos Serrao. "Web application security:
Improving critical web-based applications quality through in-depth
security analysis." Information Society (i-Society), 2011 International
Conference on. IEEE, 2011.

[21] Trifonov, Gergely. "Reducing the number of security vulnerabilities in
web applications by improving software quality." 2009 5th International
Symposium on Applied Computational Intelligence and Informatics.
2009.

[22] Wakchaure, Mr Manoj Ashok, and Shashank D. Joshi. "A Framework to
Detect and Analyze Software Vulnerabilities: Analysis Phase in SDLC."
Journal of Modern Electronics 4.1-2 (2015).

