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Abstract—In recent years, the use of smart devices is 
becoming increasingly popular. All kinds of mobile applications 
are emerging. In addition to the official market, there are also 
many ways to allow users to download the mobile app. As 
unidentified instances of malware grow day by day, off-the-shelf 
malware detection methods identify malicious programs mainly 
with extracted signatures of codes, which only can effectively 
identify already known malwares, but not new malwares in 
initial spread. If no samples of these malwares are reported and 
the virus code library is not patched, users won’t be alerted to the 
malwares. Therefore, this paper proposed a new detection 
method by live log analysis. A sandbox is conducted to mimic 
human operations and monitor responses from APPs. Feeding 
these manual events can excite deactivated malwares and 
improve the accuracy of log analysis, even though these malware 
are unknown yet. This study takes recent malwares and benign 
programs to conduct experiments, and then verifies the 
effectiveness of the proposed method comparing with those in 
other papers. The experimental results show that the proposed 
method outperforms in both hit rate and pass rate. 

Keywords—Sandbox; Malware Detection; Data Mining; live 
event feeding 

I.  INTRODUCTION 

Recently, the use of smart devices is becoming increasingly 
popular. All kinds of mobile applications are emerging. Apps 
can be downloaded from the official market and third-party 
stores. Therefore, programs that have not been officially 
certified and even malwares are also increasing. According to 
Gartner [1], smart device sales reached 1.9 billion units in 
2014. Gartner predicts that from 2015 to 2017, annual sales of 
smart devices will continue to grow. The apps not only can 
substantially be downloaded from the Internet and installed on 
smart devices, but also much tightly integrated with the cloud 
service via a ubiquitous network. With fast development and 
deployment of 4G network, transmission data rate and network 
coverage of each operators rapidly increase, which enable 
smart devices more diversified services, thus significantly 
changing users’ experience on these devices and also the way 
people work, relax and live. 

The market of smart devices rapidly grows, resulting in 
large and unknown potential security risk. According to IDC 
survey results [2], Android system already has a market share 

of 82.8% in the second quarter of 2015. iOS system takes down 
the second place with a market share of only 13.9%. The 
results of the survey shows that currently more than eighty 
percent of smart device users worldwide are using Android. 
August 2015 McAfee Labs Threats Report [3] points out that 
there is always a security threat in smart devices. The numbers 
of mobile malware samples in both the first and second 
quarters of 2015 increase by nearly 500,000 compared to the 
prior quarters'. 

Existing malware detection techniques identify malicious 
programs by known code patterns [4]. Hence they can not 
identify and prevent malwares which have never been reported. 
For mobile devices, malware scanning consumes a lot of 
resource, such as computation, memory and power. Therefore, 
we need an economic mechanism to detect malwares on mobile 
devices. Furthermore, the mechanism shall quickly identify 
both known and unknown malware while initially spreading. 

Therefore, we propose a method that dynamically analyzes 
behavior patterns in a sandbox. The sandbox is an isolated and 
virtualized environment where untrusted applications execute 
under supervision. Besides, the environment also can mimic 
users’ operations on mobile phones in our plan, such as making 
phone calls, sending short message and so on. We analyze 
mobile device log and then compare performance with other 
studies’. The proposed method is better than traditional ones of 
static and dynamic analysis on the aspects of hit rate and pass 
rate. 

II. RELATED WORK 

In recent years, many studies on smart portable device 
carry out static analysis and dynamic analysis. The 
comparison between Android and iOS systems are described 
in the literatures [5][6][7]. The result shows that Android 
system is higher risky. Reference [8] mentioned that malwares 
have a very high proportion based on the Android system. 
Reference [9] depicts that an attacker can gain a deeper 
understanding on Android platform because of open sourcing. 
Furthermore, Google opens market to third parties that are 
unofficial and independent from Google Play Store. This 
makes the apps to be released more easily, thus causing users 
very easy to expose to the virus or malicious apps. 
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The numbers of mobile malware samples in both the first 
and second quarters of 2015 increase by nearly 1 million 
compared to the prior quarters according to the report by 
McAfee Labs Threats in August 2015. This shows the security 
issue on the smart device can’t be ignored. 

A. Static Analysis 

The static analysis is to check permission requirement and 
look for code signature before installing or invoking 
suspicious applications on mobiles. This approach has the 
advantage of high accuracy and fast speed. In the case of code 
signature, static analysis first requires searching for codes that 
have malicious acts, and then builds a database based on the 
collected signatures. Once applications executes, it detects 
malware by matching the executed program with those 
signatures. 

While the Android API keeps opening and increasing, 
malware developers continuously modify their programs to 
avoid antivirus scanning. Static analysis would be difficult to 
scan for malicious means of code content. Most of traditional 
anti-virus programs are of static analysis, and their 
discernment depends on the level of latency that database 
updating follow up initial spread of new malwares. These 
static analysis approaches might not accurately analyze the 
malwares that are newly born and whose signatures are not in 
the database. 

Static analysis also includes checking required 
permissions. Aggressive checking prevents possible malwares 
in advance but may result users’ confusion. On the other hand, 
mild checking could miss potential malwares. 

Liang et al.[10] mentioned the static analysis based on 
permission[11] combination. They proposed the K-map (K-
map is the set where they keep permission combinations of 
those sampled malwares generating), which is derived from 
the 1260 malwares and 741 benign programs. They categorize 
several families of malwares, and obtain sets of permission 
rules for each family, which can be used to recognize 
malwares and their family belonged to. Reference [10] uses 
permissions for analysis, even though it can get very high 
accuracy. However, as the smart devices’ operating system 
gives more API and functions, apps will require more 
permission. Malware’s permission will easily overlap with 
benign apps’. The accuracy of this analysis method decreases 
and false positives rate increases, even worse if mobile apps 
are injected malicious codes and repackaged again, because 
permissions of the injected code may overlap with the original 
apps, resulting in troublesome of differentiating permission of 
the malicious from the normal. 

B. Dynamic Analysis 

Dynamic analysis methods judge whether programs are 
malicious by observing their behavior in isolated machines. 
Dynamic analysis is roughly classified into two types: 
“network traffic analysis” and “sequential event analysis”. 
Packet analysis refers to analyze sequences and contents of 
packets that have passed through supervised networks. 
Although the packet analysis on network traffic is faster than 
the event analysis, those actions without the internet will not 

be effectively analyzed. Besides, many malwares do harmful 
attacks that are only elicited by human activity. Therefore, 
analysis on only logged acts is not a thorough solution. 

Arora et al.[12] used the method “Network traffic 
analysis”, which divides traffic into a number of traffic 
features and captures packets according to certain packet 
signature. Zhao et al.[13] mainly based on generated events 
and the conditions of how system resources are being used 
during execution of apps (for example: GPS, SMS, players, 
etc.). Then the data is recorded and analyzed. Patent [14] 
proposed a black box detection method of recording various 
detection operations in a standard mobile terminal detection 
model machine and comparing these operation records with 
user service report records provided by a mobile operator. If 
they are conformed, the result means that the application does 
not contain malware; on the contrary, if not matched, it means 
that the application does contain malware. 

Patent [15] proposed a static analysis method of scanning 
uniform resource locators (URL) in apps. It compares the 
URLs in source codes to those malicious URLs in a well-
maintained database, to determine whether the apps are 
malicious. Patent [16] integrates two parts of static and 
dynamic analysis. The static analysis part traditionally checks 
code signatures and permissions in AndroidManifest.xml, and 
the dynamic analysis part decompiles the application package 
and adds a monitor code in the source file. After repacking, 
the app is installed in the sandbox and observed. The recorded 
events during observation are then further analyzed. 

In summary, dynamic analysis has many kinds, such as 
traffic analysis and sequential event analysis. Traffic analysis 
methods resolve packet contents to determine whether the 
apps are malicious. If the content of packets is encrypted or 
not transmitted through the supervised network, the 
effectiveness of the analysis is limited. Event analysis installs 
the app in the virtual machine, and analyzes the generated 
event. Nevertheless, human behavior, such as turn on/off 
screens, may activate harmful behavior of malware [17]. To 
our best knowledge, there is no malware analysis framework 
that can mimic human activities to trigger malicious actions 
from malware apps. Hence these frameworks off the shelf 
might skip these event-triggered malwares. We propose to 
emulate human behavior on the sandbox by feeding in 
interaction events of user interface, resulting in that malicious 
applications highly tend to act. 

III. PROPOSED METHOD 

We proposed a method which analyzes malware’s acts in 
SandBox and DroidBox [18]. The following subsections give 
an overview of proposed method and detail categorization of 
acts’ signature.  

A. System Architecture 

The system architecture is as shown in Fig. 1. Firstly, APPs 
are to be installed in the Android SandBox. Afterwards, the 
DroidBox will be recorded logged act to the database from the 
logger. At the same time, the Human Event Emulator will be 
through Console communication with Android SandBox. Then, 
Action Counter counts each app’s act sequence by Algorithm 



1. The next step will be Act Combination for each APP and 
insert to malware or benign act sets database. When database 
generated, the malware or benign act sets count to Act 
Combination Count Table by Algorithm 2. The last, Act 
Combination Count Table sort and select the top rule to Rule 
Set. Rule Set is M-map (M-map as a storage of Hash produced 
by combination of behavior signatures) which will be use it to 
classify unknown APPs. 
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Fig. 1. System Architecture 

TABLE I.  SELECTION OF ACT 

Signature Description 
send SMS Message sending 
read SMS Message receiving 
File access Operations involving files 

recvnet Receive via network 
sendnet Transfer operations via network 
open net Socket open operations 

IMEI read Read IMEI 
IMEI send Send IMEI using network 
IMSI read Read IMSI 
IMSI send Send IMSI using network 

read contact Read contact 
send contact Send contact using network 

read phone number Read phone number 
send phone number Send phone number using network 

Read ICCID Read Integrate circuit card identity 
Phone call Phone call 

 

Table I is the description of our act selection. We use it to 
define behavior signatures based on log file contents produced 
by DroidBox. We define 16 behavior signatures such as send 
SMS, File access, recvnet, sendnet, open net and Phone call. 
These behavior signatures stated above are built-in within 
DroidBox.  

In order to facilitate follow-up M-map experiments, we 
merge 11 feature acts, which may leak private data, to one 
aggregated feature act called “dataleaks”. These acts are “read 
SMS”, “IMEI read”, “IMEI send”, “IMSI read”, “IMSI send”, 

“read Contacts”, “send Contacts”, “read phone number”, “send 
phone number”, “Read ICCID”, and “Phone call”. 

Traditional dynamic analysis is to install the target app in a 
sandbox and observe the produced acts. The analysis process 
does not feed in any events through the box. In order to 
observe the added human actions which affect the outcome of 
analysis, we implement both the traditional dynamic analysis 
and event-feeding analysis. In fact, there are really some 
malicious behaviors waiting for the specific events by human 
event-triggered [17][20]. Therefore, we propose to add human 
behavior emulation in the process. 

Execution time of a script is 6 hours long. In the first hour, 
there is no action fed in. In the second hour, the script will 
make phone calls, send messages, receive SMS, receive calls, 
and lock and unlock the screen. There are six actions in such a 
cycle, each action last for 1 minute, separated by 10-second 
idle intervals. After those operations above have been 
completed, the script stops for 90 minutes and repeats again 
and again until the end of four hours, as shown in Fig. 2. 

                Time 
Action 

1H 2H 3H 4H 5H 6H 

Idle       
The first cycle       

Idle       
The second cycle       

Idle       
The third cycle       

Idle       

Fig. 2. Gantt chart of script execution 

Following the above experiments, emulated human 
behavior is added. The program that is going to be analyzed 
possibly increases the number of feature acts generated. For 
examples in Table II, when the malware sample “Android SMS 
trojan Flash fake installer” executes standalone, the feature act 
numbers of “File Access”, “recvnet”, “sendnet”, “open net”, 
and “dataleaks”, are 1433, 1, 2, 1, and 1, respectively. After 
feeding in emulated human events, the feature act numbers 
become 1649, 7, 10, 7, and 8, respectively. In the other hand, 
when the benign program “Facebook” executes standalone, the 
feature act numbers of “File Access” and “dataleaks” are 413 
and 1, respectively. After feeding in emulated human events, 
the numbers become 435 times and 1, respectively. These 
values show that feeding emulated events effectively raises the 
degree of malicious activity of malware, but won’t affect 
performance of benign programs. Feeding events thus can help 
us more accurately determine a malware. 

TABLE II.  COMPARISON ON THE NUMBER OF BEHAVIOR 

          APP 
 
Signature 

Flash fake 
installer 

Flash fake 
installer 
(with live 
event) 

Facebook 
Facebook 
(with live 
event) 

File access 1443 1649 413 435 
Recvnet 1 7 0 0 
Sendnet 2 10 0 0 
Open net 1 7 0 0 
Dataleaks 1 8 1 1 



B. Signature Categorization  

TABLE III.  NOTATIONS DEFINITIONS 

Notation Description 
P Set of APP 
pi i-th APP in P 
A Set of probable action 
ai Action i 
Si Action sequence of APPi 
Si,j j-th action in Si 

Ci,j Count of action j in APP i, j∈A, i∈P 

Q A set of action 

Di Count of action combination i, i∈2A 
2A Power set of A 

 
Algorithm 1. Counting of DroidBox generated log 

Input: Given Si, i∈P 

Output: Ci,j, i∈P, j∈A 

for each APP i∈P do 

       for each action j in Si do 

              Ci,j++ 

       end for 
end for 

 
It has been observed that feature acts that produced by 

malwares are usually more than one, so this paper proposes to 
classify those acts by using M-map. We use a combination of 
features to combine the feature acts produced by single 
malware. We conduct the analysis with the preceding script 
and malware features. Then we use M-map to classify (M≥1). 
M-map automatically generates a rule set in an iterative 
manner (M = 1, 2, 3, ...) such as Algorithm 1 and Algorithm 2. 

Symbols used are as shown in Table III. The generated rule set 
can classify possible malwares. 

 
Algorithm 2. Counting all of act combinations and sorting 

Input: {Ci,j| i∈P, j∈A} 

for each element i, i∈(2A –{{}}) do 

       for each APP j ∈ P do 

              Q={a | a∈A^Cj,a > 0} 

              if i⊆Q then 

                     Di++ 

              end if 

       end for 

end for 

 

E is sorted sequence of each element i∈(2A –{{}}) according to 

descending order of value Di 
M-map = Sequence of top 10 from selected elements of E, where 
each selected element i satisfies |i|=M 

Algorithm 1 counts DroidBox-generated logged acts for 
each apps. Algorithm 2 counts act combinations for the set of 
apps. It also sorts and derives top 10 size-M act combinations 
to produce M-map. Both malwares and benign programs use 
Algorithm 1 and 2 to produce M-map. Fig. 3 displays the top 
ten feature act generated from malwares in the condition of M 
= 1, 2, 3 and 4. Then we also add act combination result of 
benign program for comparison. 

When M=1, malwares frequently generate “sendnet”, “open 
net”, “recvnet” and “File access”. Benign programs perform in 
a similar way, but with a higher proportion of File access. 
These four features are common behaviors for all applications.
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(a)M=1                                                                                                             (b)M=2 
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Fig. 3. Top 10 behavior combinations 



When M=2, we find that more than half of behavior 
combinations from malwares have much higher proportion 
than those from benign programs, such as “recvnet & IMEI 
sent”, “recvnet & IMEI read”, “sendnet & IMEI read”, 
“sendnet & IMEI send” and “IMEI read & IMEI send”. Along 
with the network sending, receiving, and IMEI (International 
Mobile Equipment Identity) reading, the malware can read the 
identity of the phone and send it with Internet. Such a behavior 
can identify each user and further collect personal information. 

When the value of M is bigger, the more accurate the 
difference of proportions can identify malwares. However, the 
M value is limited to the combination size of benign programs. 
Malwares usually require more functionality than benign 
programs do. This also represents that an app contains more 
types of acts resulting in higher possibility/capability that smart 
devices are hacked or private data are stolen. Thus this study 
conducts an experiment with M = 1,2,3,4,5,6 and we discuss 
which actions often occur in malicious or benign programs. 

IV. EXPERIMENTAL EVALUATION 

A. Analyzed Samples 

The sources of experimental data come from the malware 
research site “contagio mobile” [19]. This site provides 
malware samples. We analyzed malware samples generated 
during the period between 2013/01 and 2015/06. The benign 
application samples are collected in Google Play Store in 
2016/01 with more than 100 thousand download times. Above 
benign application are all published by well-known companies 
like Facebook. The analysis uses 38 malware samples and 22 
samples of benign program collected for analysis. 

B. Experiment and Result 

Based on M-map generated above, we define the 
percentage of malware samples detected by the rules as Hit 
Rate (HR). The percentage of benign samples detected as Pass 
Rate (PR). False Negative Rate (FNR) is the percentage of 
undetected malware. False Positive Rate (FPR) is defined as 
the percentage of benign program of detected malwares. We 
can organize the results and obtained Table IV. Malware’s HR 
decreases as M increases, but raises the PR of benign program. 

TABLE IV.  LIVE EVENT FEEDING RESULTS 

M HR(%) PR(%) FNR(1-HR) (%) FPR(1-PR)(%) 

1 97.36 18.19 2.64 81.81 

2 78.94 22.73 21.06 77.27 

3 65.78 40.91 34.22 59.09 

4 47.36 40.91 52.64 59.09 

5 36.84 90.91 63.16 9.09 

6 26.31 100 73.69 0 

In Table IV, malware detection rate (HR) was 97.36% 
when M=1. When M increases, malware detection rate 
decreases and the missing rate of benign program (FPR) also 
decreases. Meanwhile, we observe that the number of actions 
which malicious and benign programs perform is very different, 
and we add some number-related features to observe whether 
the malware detection rates can be enhanced while reducing 
the false positives rate for benign programs. In this regard, the 

features of relational operators on actions’ counter are added to 
the experiment. We add “sendnet<=3 & recvnet<=24”(named 
J481) and “opennet>0 & File access<=27”(named J482) as 
virtual signatures. Then, the M-map is regenerated afterwards. 

Based on Fig. 4 and Fig. 5, we discovered that there are 
significant differences with the malware and benign programs 
compared to (c) and (d) in Fig. 3. Based on the M-map tested 
in this paper, the act combination of the top three can cover 
most of the malwares and benign programs. Therefore, this 
experiment just takes the top three combinations of features for 
analysis. The analyzed results are shown in Table V. It can be 
learned from the results, when the M = 4, it has the largest 
malware detection rate, and the lowest false positive rate of 
benign programs. 

TABLE V.  LIVE EVENT FEEDING WITH VIRTUAL SIGNATURE RESULT 

M HR(%) PR(%) FNR(1-HR) (%) FPR(1-PR)(%) 

1 73.68 31.82 26.32 68.18 

2 73.68 50 26.32 50 

3 68.42 50 31.58 50 

4 73.68 100 26.32 0 

5 44.73 100 55.27 0 

6 23.68 100 76.32 0 
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Fig. 4. Regeneration of M-map after adding signature when M=3. 
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Fig. 5. Regeneration of M-map after adding signature when M=4. 
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Some clues can be learned from the Fig. 6. We compare 
between two experiments. In the second experiment, we 
combine few behavior counter relations to a new signature. 
When M=4, HR and PR are better than of the original. 

C. Comparison with Other Method 

In order to verify the accuracy and reasonableness of our 
program, we compare results with reference [10], which 
assesses the combination of Android APK permissions. Then 
we implement the method in [10] and feed in our collected 
samples. The reference described why the K=6 has best 
analyzed Hit Rate. Analyzed results are in Table VI. Hit Rate is 
34.21% and Pass Rate is 95.46%. They are lower than ours. 

We investigate the results from reference [10] and deduce 
why their Hit Rate and Pass rate is lower than the proposed. 
This is because malware samples declare those unused 
permissions in the file Manifest.xml, even they don’t need 
them. Our method checks only those used functions at run time 
in finer granularity. Besides, many benign applications (e.g. 
Facebook) have more and more functions as well as 
permissions. Reference [10] thus increases the false positive 
rate of permission combination used by the benign programs.  

The permissions analysis of k-map [10] achieves pretty 
good performance in malware detection when K=4. However 
the permission of APP relatively increases as the API and 
functions of smart devices’ operating system are getting more 
and more. If an application has been injected malicious code 
and repackaged, its permission is easily overlapped with the 
original. This permission analysis method then can not 
effectively apply on malware detection. 

TABLE VI.  COMPARISON WITH OUR METHOD 

 HR(%) PR(%) FNR(1-HR) (%) FPR(1-PR)(%) 

K=6 34.21 95.46 65.79 4.54 

M=4 73.68 100 26.32 0 

V. CONCLUSION 

In this paper, we propose a method for malware detection. 
In the past, if there is no malware’s sample signature in the 
malware database, then malware detection can not quickly find 
new malwares. Although the official markets like Google Play 
and Apple APP Store check their apps, technologies may 
upgrade and vulnerabilities happen at any time, leading to new 
malwares. 

To avoid new malwares which are given birth by new 
technologies and new vulnerabilities, we propose a method of 
analyzing malware behavior with higher accuracy because our 
method considers apps’ behavior at run time in finer 
granularity. Furthermore, the study proposed emulating human 
operations, the idea of which has not yet been proposed, to 
activate malwares and hence increase the accuracy of analysis. 
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