
Mobile Malware Detection in Sandbox with Live
Event Feeding and Log Pattern Analysis

Wei-Ting Lin and Jen-Yi Pan
Department of Communications Engineering

National Chung Cheng University
Chia-Yi, Taiwan, R.O.C.

h30299@gmail.com, jypan@comm.ccu.edu.tw

Abstract—In recent years, the use of smart devices is
becoming increasingly popular. All kinds of mobile applications
are emerging. In addition to the official market, there are also
many ways to allow users to download the mobile app. As
unidentified instances of malware grow day by day, off-the-shelf
malware detection methods identify malicious programs mainly
with extracted signatures of codes, which only can effectively
identify already known malwares, but not new malwares in
initial spread. If no samples of these malwares are reported and
the virus code library is not patched, users won’t be alerted to the
malwares. Therefore, this paper proposed a new detection
method by live log analysis. A sandbox is conducted to mimic
human operations and monitor responses from APPs. Feeding
these manual events can excite deactivated malwares and
improve the accuracy of log analysis, even though these malware
are unknown yet. This study takes recent malwares and benign
programs to conduct experiments, and then verifies the
effectiveness of the proposed method comparing with those in
other papers. The experimental results show that the proposed
method outperforms in both hit rate and pass rate.

Keywords—Sandbox; Malware Detection; Data Mining; live
event feeding

I. INTRODUCTION

Recently, the use of smart devices is becoming increasingly
popular. All kinds of mobile applications are emerging. Apps
can be downloaded from the official market and third-party
stores. Therefore, programs that have not been officially
certified and even malwares are also increasing. According to
Gartner [1], smart device sales reached 1.9 billion units in
2014. Gartner predicts that from 2015 to 2017, annual sales of
smart devices will continue to grow. The apps not only can
substantially be downloaded from the Internet and installed on
smart devices, but also much tightly integrated with the cloud
service via a ubiquitous network. With fast development and
deployment of 4G network, transmission data rate and network
coverage of each operators rapidly increase, which enable
smart devices more diversified services, thus significantly
changing users’ experience on these devices and also the way
people work, relax and live.

The market of smart devices rapidly grows, resulting in
large and unknown potential security risk. According to IDC
survey results [2], Android system already has a market share

of 82.8% in the second quarter of 2015. iOS system takes down
the second place with a market share of only 13.9%. The
results of the survey shows that currently more than eighty
percent of smart device users worldwide are using Android.
August 2015 McAfee Labs Threats Report [3] points out that
there is always a security threat in smart devices. The numbers
of mobile malware samples in both the first and second
quarters of 2015 increase by nearly 500,000 compared to the
prior quarters'.

Existing malware detection techniques identify malicious
programs by known code patterns [4]. Hence they can not
identify and prevent malwares which have never been reported.
For mobile devices, malware scanning consumes a lot of
resource, such as computation, memory and power. Therefore,
we need an economic mechanism to detect malwares on mobile
devices. Furthermore, the mechanism shall quickly identify
both known and unknown malware while initially spreading.

Therefore, we propose a method that dynamically analyzes
behavior patterns in a sandbox. The sandbox is an isolated and
virtualized environment where untrusted applications execute
under supervision. Besides, the environment also can mimic
users’ operations on mobile phones in our plan, such as making
phone calls, sending short message and so on. We analyze
mobile device log and then compare performance with other
studies’. The proposed method is better than traditional ones of
static and dynamic analysis on the aspects of hit rate and pass
rate.

II. RELATED WORK

In recent years, many studies on smart portable device
carry out static analysis and dynamic analysis. The
comparison between Android and iOS systems are described
in the literatures [5][6][7]. The result shows that Android
system is higher risky. Reference [8] mentioned that malwares
have a very high proportion based on the Android system.
Reference [9] depicts that an attacker can gain a deeper
understanding on Android platform because of open sourcing.
Furthermore, Google opens market to third parties that are
unofficial and independent from Google Play Store. This
makes the apps to be released more easily, thus causing users
very easy to expose to the virus or malicious apps.

© Copyright IEICE – The 18th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2016

The numbers of mobile malware samples in both the first
and second quarters of 2015 increase by nearly 1 million
compared to the prior quarters according to the report by
McAfee Labs Threats in August 2015. This shows the security
issue on the smart device can’t be ignored.

A. Static Analysis

The static analysis is to check permission requirement and
look for code signature before installing or invoking
suspicious applications on mobiles. This approach has the
advantage of high accuracy and fast speed. In the case of code
signature, static analysis first requires searching for codes that
have malicious acts, and then builds a database based on the
collected signatures. Once applications executes, it detects
malware by matching the executed program with those
signatures.

While the Android API keeps opening and increasing,
malware developers continuously modify their programs to
avoid antivirus scanning. Static analysis would be difficult to
scan for malicious means of code content. Most of traditional
anti-virus programs are of static analysis, and their
discernment depends on the level of latency that database
updating follow up initial spread of new malwares. These
static analysis approaches might not accurately analyze the
malwares that are newly born and whose signatures are not in
the database.

Static analysis also includes checking required
permissions. Aggressive checking prevents possible malwares
in advance but may result users’ confusion. On the other hand,
mild checking could miss potential malwares.

Liang et al.[10] mentioned the static analysis based on
permission[11] combination. They proposed the K-map (K-
map is the set where they keep permission combinations of
those sampled malwares generating), which is derived from
the 1260 malwares and 741 benign programs. They categorize
several families of malwares, and obtain sets of permission
rules for each family, which can be used to recognize
malwares and their family belonged to. Reference [10] uses
permissions for analysis, even though it can get very high
accuracy. However, as the smart devices’ operating system
gives more API and functions, apps will require more
permission. Malware’s permission will easily overlap with
benign apps’. The accuracy of this analysis method decreases
and false positives rate increases, even worse if mobile apps
are injected malicious codes and repackaged again, because
permissions of the injected code may overlap with the original
apps, resulting in troublesome of differentiating permission of
the malicious from the normal.

B. Dynamic Analysis

Dynamic analysis methods judge whether programs are
malicious by observing their behavior in isolated machines.
Dynamic analysis is roughly classified into two types:
“network traffic analysis” and “sequential event analysis”.
Packet analysis refers to analyze sequences and contents of
packets that have passed through supervised networks.
Although the packet analysis on network traffic is faster than
the event analysis, those actions without the internet will not

be effectively analyzed. Besides, many malwares do harmful
attacks that are only elicited by human activity. Therefore,
analysis on only logged acts is not a thorough solution.

Arora et al.[12] used the method “Network traffic
analysis”, which divides traffic into a number of traffic
features and captures packets according to certain packet
signature. Zhao et al.[13] mainly based on generated events
and the conditions of how system resources are being used
during execution of apps (for example: GPS, SMS, players,
etc.). Then the data is recorded and analyzed. Patent [14]
proposed a black box detection method of recording various
detection operations in a standard mobile terminal detection
model machine and comparing these operation records with
user service report records provided by a mobile operator. If
they are conformed, the result means that the application does
not contain malware; on the contrary, if not matched, it means
that the application does contain malware.

Patent [15] proposed a static analysis method of scanning
uniform resource locators (URL) in apps. It compares the
URLs in source codes to those malicious URLs in a well-
maintained database, to determine whether the apps are
malicious. Patent [16] integrates two parts of static and
dynamic analysis. The static analysis part traditionally checks
code signatures and permissions in AndroidManifest.xml, and
the dynamic analysis part decompiles the application package
and adds a monitor code in the source file. After repacking,
the app is installed in the sandbox and observed. The recorded
events during observation are then further analyzed.

In summary, dynamic analysis has many kinds, such as
traffic analysis and sequential event analysis. Traffic analysis
methods resolve packet contents to determine whether the
apps are malicious. If the content of packets is encrypted or
not transmitted through the supervised network, the
effectiveness of the analysis is limited. Event analysis installs
the app in the virtual machine, and analyzes the generated
event. Nevertheless, human behavior, such as turn on/off
screens, may activate harmful behavior of malware [17]. To
our best knowledge, there is no malware analysis framework
that can mimic human activities to trigger malicious actions
from malware apps. Hence these frameworks off the shelf
might skip these event-triggered malwares. We propose to
emulate human behavior on the sandbox by feeding in
interaction events of user interface, resulting in that malicious
applications highly tend to act.

III. PROPOSED METHOD

We proposed a method which analyzes malware’s acts in
SandBox and DroidBox [18]. The following subsections give
an overview of proposed method and detail categorization of
acts’ signature.

A. System Architecture

The system architecture is as shown in Fig. 1. Firstly, APPs
are to be installed in the Android SandBox. Afterwards, the
DroidBox will be recorded logged act to the database from the
logger. At the same time, the Human Event Emulator will be
through Console communication with Android SandBox. Then,
Action Counter counts each app’s act sequence by Algorithm

1. The next step will be Act Combination for each APP and
insert to malware or benign act sets database. When database
generated, the malware or benign act sets count to Act
Combination Count Table by Algorithm 2. The last, Act
Combination Count Table sort and select the top rule to Rule
Set. Rule Set is M-map (M-map as a storage of Hash produced
by combination of behavior signatures) which will be use it to
classify unknown APPs.

APP
Repository

Android SandBox
APP

LoggerConsole
Human Event

Emulator
DroidBoxLogged Act

Testing
Log File

Logged Act

Algorithm1

Count of action

APP Count Table

Algorithm 2Rule Sets

Malware
Act Emulator
Count Table

Benign
Act Emulator
Count Table

Result

APP
Act Combination

Each APP acts

Testing

Training

Act Sequence

Rule Sets

APK File

Command

Command

Command Device Act

Act Sequence

Training
Log File

Sort and Select
Rule Sets

Algorithm1Count of action
APP

Count Table

Each
APP acts

Use Rule Sets
Analysis APP

Fig. 1. System Architecture

TABLE I. SELECTION OF ACT

Signature Description
send SMS Message sending
read SMS Message receiving
File access Operations involving files

recvnet Receive via network
sendnet Transfer operations via network
open net Socket open operations

IMEI read Read IMEI
IMEI send Send IMEI using network
IMSI read Read IMSI
IMSI send Send IMSI using network

read contact Read contact
send contact Send contact using network

read phone number Read phone number
send phone number Send phone number using network

Read ICCID Read Integrate circuit card identity
Phone call Phone call

Table I is the description of our act selection. We use it to
define behavior signatures based on log file contents produced
by DroidBox. We define 16 behavior signatures such as send
SMS, File access, recvnet, sendnet, open net and Phone call.
These behavior signatures stated above are built-in within
DroidBox.

In order to facilitate follow-up M-map experiments, we
merge 11 feature acts, which may leak private data, to one
aggregated feature act called “dataleaks”. These acts are “read
SMS”, “IMEI read”, “IMEI send”, “IMSI read”, “IMSI send”,

“read Contacts”, “send Contacts”, “read phone number”, “send
phone number”, “Read ICCID”, and “Phone call”.

Traditional dynamic analysis is to install the target app in a
sandbox and observe the produced acts. The analysis process
does not feed in any events through the box. In order to
observe the added human actions which affect the outcome of
analysis, we implement both the traditional dynamic analysis
and event-feeding analysis. In fact, there are really some
malicious behaviors waiting for the specific events by human
event-triggered [17][20]. Therefore, we propose to add human
behavior emulation in the process.

Execution time of a script is 6 hours long. In the first hour,
there is no action fed in. In the second hour, the script will
make phone calls, send messages, receive SMS, receive calls,
and lock and unlock the screen. There are six actions in such a
cycle, each action last for 1 minute, separated by 10-second
idle intervals. After those operations above have been
completed, the script stops for 90 minutes and repeats again
and again until the end of four hours, as shown in Fig. 2.

 Time
Action

1H 2H 3H 4H 5H 6H

Idle
The first cycle

Idle
The second cycle

Idle
The third cycle

Idle

Fig. 2. Gantt chart of script execution

Following the above experiments, emulated human
behavior is added. The program that is going to be analyzed
possibly increases the number of feature acts generated. For
examples in Table II, when the malware sample “Android SMS
trojan Flash fake installer” executes standalone, the feature act
numbers of “File Access”, “recvnet”, “sendnet”, “open net”,
and “dataleaks”, are 1433, 1, 2, 1, and 1, respectively. After
feeding in emulated human events, the feature act numbers
become 1649, 7, 10, 7, and 8, respectively. In the other hand,
when the benign program “Facebook” executes standalone, the
feature act numbers of “File Access” and “dataleaks” are 413
and 1, respectively. After feeding in emulated human events,
the numbers become 435 times and 1, respectively. These
values show that feeding emulated events effectively raises the
degree of malicious activity of malware, but won’t affect
performance of benign programs. Feeding events thus can help
us more accurately determine a malware.

TABLE II. COMPARISON ON THE NUMBER OF BEHAVIOR

 APP

Signature

Flash fake
installer

Flash fake
installer
(with live
event)

Facebook
Facebook
(with live
event)

File access 1443 1649 413 435
Recvnet 1 7 0 0
Sendnet 2 10 0 0
Open net 1 7 0 0
Dataleaks 1 8 1 1

B. Signature Categorization

TABLE III. NOTATIONS DEFINITIONS

Notation Description
P Set of APP
pi i-th APP in P
A Set of probable action
ai Action i
Si Action sequence of APPi
Si,j j-th action in Si

Ci,j Count of action j in APP i, j∈A, i∈P

Q A set of action

Di Count of action combination i, i∈2A
2A Power set of A

Algorithm 1. Counting of DroidBox generated log

Input: Given Si, i∈P

Output: Ci,j, i∈P, j∈A

for each APP i∈P do

 for each action j in Si do

 Ci,j++

 end for
end for

It has been observed that feature acts that produced by

malwares are usually more than one, so this paper proposes to
classify those acts by using M-map. We use a combination of
features to combine the feature acts produced by single
malware. We conduct the analysis with the preceding script
and malware features. Then we use M-map to classify (M≥1).
M-map automatically generates a rule set in an iterative
manner (M = 1, 2, 3, ...) such as Algorithm 1 and Algorithm 2.

Symbols used are as shown in Table III. The generated rule set
can classify possible malwares.

Algorithm 2. Counting all of act combinations and sorting

Input: {Ci,j| i∈P, j∈A}

for each element i, i∈(2A –{{}}) do

 for each APP j ∈ P do

 Q={a | a∈A^Cj,a > 0}

 if i⊆Q then

 Di++

 end if

 end for

end for

E is sorted sequence of each element i∈(2A –{{}}) according to

descending order of value Di
M-map = Sequence of top 10 from selected elements of E, where
each selected element i satisfies |i|=M

Algorithm 1 counts DroidBox-generated logged acts for
each apps. Algorithm 2 counts act combinations for the set of
apps. It also sorts and derives top 10 size-M act combinations
to produce M-map. Both malwares and benign programs use
Algorithm 1 and 2 to produce M-map. Fig. 3 displays the top
ten feature act generated from malwares in the condition of M
= 1, 2, 3 and 4. Then we also add act combination result of
benign program for comparison.

When M=1, malwares frequently generate “sendnet”, “open
net”, “recvnet” and “File access”. Benign programs perform in
a similar way, but with a higher proportion of File access.
These four features are common behaviors for all applications.

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

P
ro

p
or

ti
on

(%
)

Malwares Benign Apps

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

P
ro

p
or

ti
on

(%
)

Malwares Benign Apps

(a)M=1 (b)M=2

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

recvnet
open net
sendnet

recvnet
IMEI read

sendnet

recvnet
IMEI send

sendnet

recvnet
IMEI send
IMEI read

sendnet
IMEI send
IMEI read

File access
open net
sendnet

File access
sendnet
recvnet

recvnet
IMEI send
open net

File access
open net
recvnet

sendnet
IMEI read
open net

P
ro

p
or

ti
on

(%
)

Malwares Benign Apps

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

recvnet
IMEI send
IMEI read

sendnet

recvnet
IMEI read
open net
sendnet

recvnet
IMEI send
open net
sendnet

File access
open net
sendnet
recvnet

recvnet
IMEI send
IMEI read
open net

sendnet
IMEI send
IMEI read
open net

File access
IMEI send

sendnet
recvnet

File access
IMEI send
IMEI read

recvnet

File access
IMEI send
IMEI read

sendnet

File access
IMEI read

sendnet
recvnet

P
ro

p
or

ti
on

(%
)

Malwares Benign Apps
(c)M=3 (d)M=4

Fig. 3. Top 10 behavior combinations

When M=2, we find that more than half of behavior
combinations from malwares have much higher proportion
than those from benign programs, such as “recvnet & IMEI
sent”, “recvnet & IMEI read”, “sendnet & IMEI read”,
“sendnet & IMEI send” and “IMEI read & IMEI send”. Along
with the network sending, receiving, and IMEI (International
Mobile Equipment Identity) reading, the malware can read the
identity of the phone and send it with Internet. Such a behavior
can identify each user and further collect personal information.

When the value of M is bigger, the more accurate the
difference of proportions can identify malwares. However, the
M value is limited to the combination size of benign programs.
Malwares usually require more functionality than benign
programs do. This also represents that an app contains more
types of acts resulting in higher possibility/capability that smart
devices are hacked or private data are stolen. Thus this study
conducts an experiment with M = 1,2,3,4,5,6 and we discuss
which actions often occur in malicious or benign programs.

IV. EXPERIMENTAL EVALUATION

A. Analyzed Samples

The sources of experimental data come from the malware
research site “contagio mobile” [19]. This site provides
malware samples. We analyzed malware samples generated
during the period between 2013/01 and 2015/06. The benign
application samples are collected in Google Play Store in
2016/01 with more than 100 thousand download times. Above
benign application are all published by well-known companies
like Facebook. The analysis uses 38 malware samples and 22
samples of benign program collected for analysis.

B. Experiment and Result

Based on M-map generated above, we define the
percentage of malware samples detected by the rules as Hit
Rate (HR). The percentage of benign samples detected as Pass
Rate (PR). False Negative Rate (FNR) is the percentage of
undetected malware. False Positive Rate (FPR) is defined as
the percentage of benign program of detected malwares. We
can organize the results and obtained Table IV. Malware’s HR
decreases as M increases, but raises the PR of benign program.

TABLE IV. LIVE EVENT FEEDING RESULTS

M HR(%) PR(%) FNR(1-HR) (%) FPR(1-PR)(%)

1 97.36 18.19 2.64 81.81

2 78.94 22.73 21.06 77.27

3 65.78 40.91 34.22 59.09

4 47.36 40.91 52.64 59.09

5 36.84 90.91 63.16 9.09

6 26.31 100 73.69 0

In Table IV, malware detection rate (HR) was 97.36%
when M=1. When M increases, malware detection rate
decreases and the missing rate of benign program (FPR) also
decreases. Meanwhile, we observe that the number of actions
which malicious and benign programs perform is very different,
and we add some number-related features to observe whether
the malware detection rates can be enhanced while reducing
the false positives rate for benign programs. In this regard, the

features of relational operators on actions’ counter are added to
the experiment. We add “sendnet<=3 & recvnet<=24”(named
J481) and “opennet>0 & File access<=27”(named J482) as
virtual signatures. Then, the M-map is regenerated afterwards.

Based on Fig. 4 and Fig. 5, we discovered that there are
significant differences with the malware and benign programs
compared to (c) and (d) in Fig. 3. Based on the M-map tested
in this paper, the act combination of the top three can cover
most of the malwares and benign programs. Therefore, this
experiment just takes the top three combinations of features for
analysis. The analyzed results are shown in Table V. It can be
learned from the results, when the M = 4, it has the largest
malware detection rate, and the lowest false positive rate of
benign programs.

TABLE V. LIVE EVENT FEEDING WITH VIRTUAL SIGNATURE RESULT

M HR(%) PR(%) FNR(1-HR) (%) FPR(1-PR)(%)

1 73.68 31.82 26.32 68.18

2 73.68 50 26.32 50

3 68.42 50 31.58 50

4 73.68 100 26.32 0

5 44.73 100 55.27 0

6 23.68 100 76.32 0

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

recvnet
open net
sendnet

sendnet
J482

open net

recvnet
IMSI send

sendnet

recvnet
J482

sendnet

recvnet
IMSI send
IMSI read

recvnet
IMSI read

sendnet

sendnet
IMSI send
IMSI read

File
access

open net
sendnet

File
access

sendnet
recvnet

recvnet
J482

open net

P
ro

p
or

ti
on

(%
)

Malwares Benign Apps
Fig. 4. Regeneration of M-map after adding signature when M=3.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

recvnet
IMSI send
IMSI read
sendnet

recvnet
J482

open net
sendnet

recvnet
IMSI send
open net
sendnet

File
access

open net
sendnet
recvnet

recvnet
IMSI read
open net
sendnet

recvnet
IMSI send
IMSI read
open net

sendnet
IMSI send
IMSI read
open net

File
access

IMSI send
IMSI read

recvnet

File
access

IMSI send
IMSI read
sendnet

File
access

IMSI read
sendnet
recvnet

P
ro

p
or

ti
on

(%
)

Malwares Benign Apps
Fig. 5. Regeneration of M-map after adding signature when M=4.

0

20

40

60

80

100

1 2 3 4 5 6

P
ro

po
rt

io
n(

%
)

The number of M
Live Event Feeding Results - HR(%)

Live Event Feeding Results - PR(%)

Live Event Feeding with Virtual Signature Result - HR(%)

Live Event Feeding with Virtual Signature Result - PR(%)
Fig. 6. Live event feeding with and without virtual signature.

Some clues can be learned from the Fig. 6. We compare
between two experiments. In the second experiment, we
combine few behavior counter relations to a new signature.
When M=4, HR and PR are better than of the original.

C. Comparison with Other Method

In order to verify the accuracy and reasonableness of our
program, we compare results with reference [10], which
assesses the combination of Android APK permissions. Then
we implement the method in [10] and feed in our collected
samples. The reference described why the K=6 has best
analyzed Hit Rate. Analyzed results are in Table VI. Hit Rate is
34.21% and Pass Rate is 95.46%. They are lower than ours.

We investigate the results from reference [10] and deduce
why their Hit Rate and Pass rate is lower than the proposed.
This is because malware samples declare those unused
permissions in the file Manifest.xml, even they don’t need
them. Our method checks only those used functions at run time
in finer granularity. Besides, many benign applications (e.g.
Facebook) have more and more functions as well as
permissions. Reference [10] thus increases the false positive
rate of permission combination used by the benign programs.

The permissions analysis of k-map [10] achieves pretty
good performance in malware detection when K=4. However
the permission of APP relatively increases as the API and
functions of smart devices’ operating system are getting more
and more. If an application has been injected malicious code
and repackaged, its permission is easily overlapped with the
original. This permission analysis method then can not
effectively apply on malware detection.

TABLE VI. COMPARISON WITH OUR METHOD

 HR(%) PR(%) FNR(1-HR) (%) FPR(1-PR)(%)

K=6 34.21 95.46 65.79 4.54

M=4 73.68 100 26.32 0

V. CONCLUSION

In this paper, we propose a method for malware detection.
In the past, if there is no malware’s sample signature in the
malware database, then malware detection can not quickly find
new malwares. Although the official markets like Google Play
and Apple APP Store check their apps, technologies may
upgrade and vulnerabilities happen at any time, leading to new
malwares.

To avoid new malwares which are given birth by new
technologies and new vulnerabilities, we propose a method of
analyzing malware behavior with higher accuracy because our
method considers apps’ behavior at run time in finer
granularity. Furthermore, the study proposed emulating human
operations, the idea of which has not yet been proposed, to
activate malwares and hence increase the accuracy of analysis.

ACKNOWLEDGMENT

This work was supported in part by Ministry of Science and
Technology, Taiwan, Republic of China, under grant MOST
105-2221-E-194-011.

REFERENCES

[1] "Gartner Says Worldwide Device Shipments to Grow 1.5 Percent, to
Reach 2.5 Billion Units in 2015", Gartner.com, 2016. [Online].
Available: http://www.gartner.com/newsroom/id/3088221. [Accessed:
29- Mar- 2016]

[2] "IDC: Smartphone OS Market Share", www.idc.com, 2016. [Online].
Available: http://www.idc.com/prodserv/smartphone-os-market-
share.jsp. [Accessed: 29- Mar- 2016]

[3] McAfee Labs Threats Report August 2015

http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-aug-
2015.pdf

[4] C.-M. Chen, J.-M. Lin, and G.-H. Lai, "Detecting Mobile Application
Malicious Behaviors Based on Data Flow of Source Code," in
Trustworthy Systems and their Applications (TSA), 2014 International
Conference on, 2014, pp. 1-6.

[5] F. Al-Qershi, M. Al-Qurishi, S. Md Mizanur Rahman, and A. Al-
Amri, "Android vs. iOS: The security battle," in Computer
Applications and Information Systems (WCCAIS), 2014 World
Congress on, 2014, pp. 1-8.

[6] I. Mohamed and D. Patel, "Android vs iOS Security: A Comparative
Study," in Information Technology-New Generations (ITNG), 2015
12th International Conference on, 2015, pp. 725-730.

[7] M. S. Ahmad, N. E. Musa, R. Nadarajah, R. Hassan, and N. E.
Othman, "Comparison between android and iOS Operating System in
terms of security," in Information Technology in Asia (CITA), 2013
8th International Conference on, 2013, pp. 1-4.

[8] Mobile Threat Report Q3 2012
https://www.f-
secure.com/documents/996508/1030743/Mobile+Threat+Report+Q3+
2012.pdf

[9] D. He, S. Chan, and M. Guizani, "Mobile application security:
malware threats and defenses," Wireless Communications, IEEE, vol.
22, pp. 138-144, 2015.

[10] S. Liang and X. Du, "Permission-combination-based scheme for
android mobile malware detection," in Communications (ICC), 2014
IEEE International Conference on, 2014, pp. 2301-2306.

[11] Developer.android.com, " <permission> | Android Developers", 2015.
[Online]. Available: http://developer.android.com/intl/zh-
tw/guide/topics/manifest/permission-element.html. [Accessed: 21-
Dec- 2015].

[12] A. Arora, S. Garg, and S. K. Peddoju, "Malware Detection Using
Network Traffic Analysis in Android Based Mobile Devices," in Next
Generation Mobile Apps, Services and Technologies (NGMAST), 2014
Eighth International Conference on, 2014, pp. 66-71.

[13] M. Zhao, F. Ge, T. Zhang, and Z. Yuan, "AntiMalDroid: an efficient
SVM-based malware detection framework for Android," in
Information Computing and Applications, ed: Springer, 2011, pp. 158-
166.

[14] HUANG YUHUI, "Black box detection method for mobile terminal
malicious software behavior", China Patent, CN103369532A, 2013.

[15] C. Alme, "System and method for detecting malicious mobile program
code", US20080263659A1, US Patent,2008.

[16] QIN ZHIGUANG, ZHAO YANG, WANG RUIJIN, LIU BINGHOU,
HU LONG and GONG XIAOBO, "Android malicious software
detecting platform oriented to mobile internet", China Patent,
CN103685251A, 2014.

[17] T. Strazzere, "Update: Android Malware DroidDream: How it Works |
Lookout Blog", Blog.lookout.com, 2011. [Online]. Available:
https://blog.lookout.com/blog/2011/03/02/android-malware-
droiddream-how-it-works/. [Accessed: 29- Mar- 2016]

[18] "pjlantz/droidbox", GitHub, 2015. [Online]. Available:
https://github.com/pjlantz/droidbox. [Accessed: 06- Apr- 2016].

[19] "contagio mobile", Contagiominidump.blogspot.tw, 2016. [Online].
Available: http://contagiominidump.blogspot.tw/. [Accessed: 29- Mar-
2016].

[20] T. Bradley, "Experts Disagree on Android Call Recording 'Trojan'",
PCWorld, 2016. [Online]. Available:
http://www.pcworld.com/article/237166/experts_disagree_on_android
_call_recording_trojan.html. [Accessed: 02- Apr- 2016].

