
Improving Quality of Experience in P2P IPTV

Yaw-Chung Chen
Department of Computer Science
National Chiao Tung University

Hsinchu, Taiwan
ycchen@cs.nctu.edu.tw

Chih-Yuan Liao
Department of Computer Science
National Chiao Tung University

Hsinchu, Taiwan
zyliao@cht.com.tw

Abstract—Nowadays many IPTV services are deployed based
on P2P structure for the sake of saving the cost of server equipment
and bandwidth requirement. Since peers may join and leave the
P2P system arbitrarily, it may cause the service quality unstable. In
this paper, we compare IP addresses to find partner peers in
proximity, and use specific packet pairs to probe partner peers that
have larger bandwidth, so as to reduce the switching delay thru
pushing the video chunks proactively. We also use two buffers that
store data of both current and newly selected channel to improve
the stability of media playback. We use OMNET++ simulator to
evaluate our proposed schemes, the numerical results show that our
schemes significantly reduce the channel switching delay and
improve the smoothness of video playback.

Keywords—P2P IPTV; media streaming; quality of experience;

switching delay; playback.

I. INTRODUCTION AND BACKGROUND

IPTV (Internet Protocol TeleVision) provides TV services
thru the Internet. In traditional centralized client-server IPTV
services, when the number of viewers grows large, it becomes
costly to provide satisfactory quality of service. For example,
MOD (Multimedia on Demand) [1] is an IPTV platform that
provides VoD (Video On demand) and TV services. These
video services are deployed within the operator’s network by
using Gigabit Switch Routers and High Performance Edge
Routers, which are quite expensive.

A. P2P Live Streaming

With the successful P2P file sharing applications such as
BitTorrent (BT) [2], various P2P streaming services including
PPLive[3], PPStream[4], SopCast[5] etc. have been widely
deployed due to their high scalability and low deployment
cost. The P2P streaming structure can be implemented in two
types, tree-based and mesh-based. In the latter, participating
peers form a randomly connected overlay, or a mesh [7]. A
peer selects some peers from the peer list as its partners, then
exchanges its buffer map for checking the chunk availability,
and uses chunk scheduling strategy to get media content from
its partners. Its advantages are robustness and ease of
implementation, but it suffers long startup delay, thus a good
peer selection strategy and a chunk scheduling strategy are
very important.

In both IPTV and P2P IPTV, only the currently watched
channel is delivered to the viewer because of the bandwidth
limitations in the access network [6]. In P2P IPTV, video

playback of the newly selected channel may be delayed due to
the latency of searching those peers watching the newly
selected channel, loading and buffering of video content. Such
kind of delay may annoy the P2P IPTV viewers.

B. Peer Selection Strategies

The peer selection strategy focuses on robustness that
regards the peer churn, and network efficiency that concerns
the packet download delay. Early research mainly adopted
Random Peer Selection Strategy and Round-Robin Peer
Selection Strategy [8], which are simple and efficient but these
schemes may select parents that could not provide sufficient
upload bandwidth, and result in the bandwidth bottleneck of
the system [9], hence RTT (Round- Trip Time) based and
ABW (Available Bandwidth) based strategies were proposed.
The former only considers the distance of the peer to its
candidate peer, it may probably select those parent peers with
low bandwidth. ABW-based strategy measures the remaining
capacity of the path between two nodes in the network [10]. It
can select the partner peer with larger available bandwidth, but
the ABW estimation is time consuming, an example is TOPP
(Trains of Packet Pairs) [11] which may spend too much time
in estimating the available path bandwidth.

C. Chunk Scheduling Strategies

In mesh based P2P streaming architecture, a peer must
maintain a set of parent peers in order to exchanging chunk
availability information. There are two popular strategies:
Rarest First (RF) method and Greedy method. The former
selects a chunk that has the least number of copies in the
system. The latter selects the chunk that is closest to its
playback deadline [12]. Rarest First strategy is widely adopted
in BitTorrent and CoolStreaming.

II. PROPOSED APPROACHES

 In this work, we proposed a peer selection scheme, an
available bandwidth estimation scheme and a chunk
scheduling algorithm to reduce the switching delay and
improve the smoothness of playback. There is a parent-child
relationship between connected peers, and content is always
delivered from the parent to child [13]. Since the peer with
low capabilities can be a bottleneck of service in
heterogeneous P2P network [14], we focus on how to quickly
select appropriate partners and improve the chunk scheduling
strategy.

© Copyright IEICE – The 18th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2016

A. Peer selection scheme

Our peer selection scheme consists of two steps,
comparing IP address and estimating available path
bandwidth. After a new peer joined the P2P network and
selected a channel, it firstly connected to the tracker for
requesting an IP list of candidate partners. The tracker will
compare all the candidate peers’ IP addresses with the one in
newly joined peer, and those candidate peers with longest IP
address bits matched will be selected. We will select up to M
peers which have IP address most close to the IP of the newly
joined peer. Since IP addresses feature characteristic of
locality, the distance between two close IP addresses is
unlikely too far. This can be verified by sending IP addresses
to IP Location Finder [15] and check their locations. After
selecting M partners, the tracker sends the partner’s IP+PORT
list to the new peer, which will then select its parent peers
from the list.

To reduce the playback delay, we select those peers with
the shortest round trip time Tp and maximum available
bandwidth (ABW). We used a pair of packets, both with
smallest size (UDP header + IP header + Payload = 28bytes)
to estimate the round trip time Tp, and used another two
packets with different sizes (smallest packet size and MTU
size) to estimate each partner peer’s ABW. Due to the high
bandwidth of nowadays backbone network, we assume that
the bandwidth bottleneck always occurs in the peer’s access
network. The requesting peer firstly starts a timer and sends a
smallest-sized packet to partner peers one by one and waits for
their ACKs in smallest-sized packet. Upon receiving an ACK,
it stops the associated timer and records the elapsed time Tp;
and starts another timer and sends a smallest-sized packet to
the same peer and waits for the ACK in MTU-sized packet.
Upon receiving the MTU-sized ACK, the sending peer records
the elapsed time Tt. The process is repeated until the peer
received all partner peers’ MTU-sized ACKs. The time
difference Tt - Tp represents the time required by a partner to
transmit extra data bytes, so we can calculate each partner
peer’s available bandwidth as follows:

ABW = [(MTU - 28) / (Tt – Tp)] bytes/s (1)

Our ABW estimation is performed three times on each
path to improve the accuracy. N peers with the maximum
ABW will be selected as its parents. If multiple partner peers
have the same ABW, peers with shorter Tp will be selected.
The total parents’ ABW must exceed the playback rate, and
every peer at most shares a half of its available bandwidth;
otherwise the video playback may not be smooth.

B. Chunk scheduling algorithm

Assuming that every media chunk has same size with a
chunkID. After peer selection, each peer will have N parents,
the peer will request chunkID_1/MOD N from its first parent,
chunkID_2/MOD N from its second parent, and so-forth.
Every parent will create a schedule table to store each child’s
ID, parent number i and number of parents N, as shown in Fig.
1. Once a peer received a chunk from its parent, it can quickly
decides whether this chunk must be pushed to its child peer or
not. This algorithm reduces the frequency of exchanging
buffer map and chunk request overhead.

In order to improving playback continuity, we use two
buffer maps. The first buffer map stores the currently watched
channel data. Once the channel switching occurs, the new
channel’s media chunk will be stored into the second buffer
map. The peer will continue to push the remaining chunks in
the first buffer map to its child peers.

When a peer is switching the channel, it restarts the peer
selection scheme, notifies all its parents to stop pushing
chunks, and sends the number of remaining chunks in its own
buffer to all its children peers and inform them regarding its
switching channel. To keep the partner list updated, we set a
threshold time Tthreshold. If the peer watches the channel for
Twatch < Tthreshold, it will select a new parent with the maximum
ABW in the partner list. Otherwise, the peer will reload its
partner list from the tracker and restart peer selection and
available bandwidth estimation. Two buffer maps help the
children peers get media chunk much steadily.

To evaluate the traffic overhead of our proposed chunk
scheduling scheme, we set Tthreshold to 10 minutes. If we
compare the packet overhead caused by switching channel
with the amount of data packets of streaming video, the packet
overhead is much smaller and could be ignored. With 1 Mbps
streaming video, it generates approximately 88 MTU-sized
packets per second. When Twatch< Tthreshold, the packet overhead
can be ignored because our approach only needs one packet to
notify the new parent peer with maximum available bandwidth
in the partner list. If Twatch > Tthreshold, the packet overhead is
about twelve times the number of partner peers because our
approach needs four packets to estimate the available
bandwidth for three times. The packet overhead and time
overhead can be calculated as follows:

Packet overhead = 12 * Number of partners (2)

Time overhead ≈3 * (Transmission delay+2* RTT) (3)

Assume that the number of partners is 10, the distance
between the peer and the farthest partner is 500 kilometers and
the available bandwidth between a peer and its partner peer is
the minimum bandwidth among all of its partners. The
bandwidth is 512Kbps, the signal speed is 200,000 km/s and
the peer has watched the channel for 10 minutes. We can
calculate the packet overhead which is 120 packets, and the

Fig. 1 Two peers and their parent peers.

number of MTU-sized packets for video streaming in ten
minutes is (88*60*10) = 52800 packets, it means that our
approach only has 0.227% packet overhead, the time overhead
≈ 3*(MTU/(512*1024/8)) + (2*(500/ 200000)))≈73.66
ms, this is far less than the duration of watching a
channel, so it can be ignored.

III. SIMULATION EXPERIMENT AND NUMERICAL RESULTS

We evaluate our proposed scheme in OMNet++16]. We
construct a centralized directory model that consists of a
tracker module, a server module and certain number of peer
modules. When a peer joined the network, it will connect to
the tracker for requesting a partner list. Upon receiving the
partner list, the peer will select some peers to download
chunks, all the peers will form a mesh-based overlay.

We assume that P2P IPTV peers are all in Taiwan, hence the
distance between any two peers should be no longer than 500
kilometers, and all the peers using HiNet Internet Services.
According to the broadband access service in Chunghwa
Telecom [17], the upload bandwidth distribution of peers is
shown in Table I. We tested some popular P2P IPTV services
such as PPTV, PPStream, and SopCast regarding their channel
switching delay and playback rate, the average channel
switching delay ranges from 7 to 20 seconds, and the data rate
of 1Mbps is sufficient for smooth playback.

To measure the real upload time of one chunk in different
bandwidth, we use a pair of server and client to test. When the
client connects to the server, the server sends a request packet
to the client, which responds by sending 88 MTU-sized
packets to the server. After the server received all these
packets, it records the total upload time. The result of this
measurement is shown in Table II. W can calculate the
Ideal/Real time ratio and the real upload bandwidth as follows:

Ideal / Real time ratio = Ideal upload time/Real upload time

Real upload bandwidth = Ideal upload bandwidth* (Ideal /
Real) time ratio

Our experiment shows that the real upload bandwidth is
about 40%~60% of ideal upload bandwidth. This is due to
TCP congestion control algorithm, with which the real
throughput is about half of ideal throughput. Therefore, in our
simulation, each peer was assigned a random number between
0.4 and 0.6 to calculate its real upload bandwidth. Thus, if the
playback rate is 1Mbps, a peer must have download
bandwidth no less than 2Mbps. In our simulation, we only
generate peers with download bandwidth larger than 2Mbps.
Table III shows the distribution of peers’ bandwidth and Table
IV shows parameters used for the simulation environment.

Table I Distribution of peer’s upload bandwidth

A. Results and Performance Analysis

We compared our proposed scheme with both the random
peer selection scheme and TOPP scheme. We use our
proposed structures, but use TOPP ABW estimation scheme,
and record the average switching delay with different number
of peers. We also measured the channel switching delay with
buffering time 2 and 4 seconds, as shown in Table V and
Table VI, respectively. It shows that our proposed scheme
spends less time than both random peer selection scheme and
TOPP scheme in switching channels, because our scheme
selects parent peers with the largest available bandwidth, and
every parent peer refuses those connections from children
peers with shared upload bandwidth lower than the playback
rate. In contrast, random peer selection scheme may select
neighbors with small upload bandwidth or connect to too
many children and lead to wasted bandwidth. The TOPP
scheme may waste too much time to estimate the end-to-end
ABW. Hence, our scheme achieved better performance in
switching delay than both random peer selection scheme and
TOPP scheme. Also when the number of peers grows, the
average switching time of our proposed scheme remains
unchanged. While the time in random peer selection scheme is
longer and the time of TOPP is unstable.

Table II. Upload one chunk (128KB) in different distance.

Table III. Distribution of peers’ bandwidth in the simulations.

Table IV. Parameters for the simulation environment.

Table V. Channel switching delay with buffer time=2 seconds.

Table VI. Channel switching delay with buffer time=4 seconds.

Fig. 2. Continuity for different number of peers.

Fig. 3 Channel switching delay for different number of parent peers.

Fig. 4 Start-up delay for different buffering time.

In Fig. 3, we found that changing number of parents
affects the channel switching delay, because increasing
number of parent peers provides peers more source peers for
requesting chunks. The start-up delay is also evaluated. We set
the playback rate to 1Mbps, the buffering time to 2 and 4
seconds, and the chunk size to 128KB. Assuming that every
peer has sufficient download bandwidth, we compare our
proposed scheme on start-up delay with the random peer
selection scheme and TOPP scheme. Fig. 4 shows that our
scheme can reduce start-up delay approximately 6~9 seconds
than the random peer selection scheme and approximately 1~3

seconds than TOPP scheme when buffering time is 2 seconds;
and approximately 5~8 seconds than the random peer selection
scheme and approximately 2~3 seconds than TOPP scheme
when buffering time is 4 seconds, because our scheme can
quickly connect to the peers which have larger upload
bandwidth, and pushing method can avoid a lot of request
time.

IV. CONCLUSION

We proposed an efficient peer selection scheme and a
chunk scheduling strategy to improve the quality of
experience of P2P IPTV. We combine the advantages of
mesh-pull based and tree-push based approaches. We
established a simulation environment in OMNET++ to
evaluate peer selection scheme and chunk scheduling strategy,
and compare the proposed schemes with the random peer
selection and TOPP schemes. The results show that our
proposed schemes reduce about 20-40% channel switching
delay than TOPP scheme and about one-third channel
switching delay of random peer selection scheme, as well as
keeps high continuity. Hence, our proposed schemes can
really improve the quality of experience of P2P IPTV system.

References

[1] MOD: http://mod.cht.com.tw/, Accessed May 2016.

[2] BitTorrent: http://www.bittorrent.com/, Accessed May 2016.

[3] PPLive: http://www.pplive.com/, Accessed May 2016.

[4] PPStream: http://www.pps.tv/, Accessed May 2016.

[5] SopCast: http://www.sopcast.org/, Accessed May 2016.

[6] Fernando M. V. Ramos, “Mitigating IPTV Zapping Delay,” IEEE
Communications Magazine Vol. 51, No. 8, pp. 128-133, August 2013.

[7] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or Multiple-Tree: A
Comparative Study of Live P2P Streaming Approaches,” in Proceedings
of INFOCOM 2007, 26th IEEE International Conference on Computer
Communications, pp. 1424-1432, May 2007.

[8] C. Lu, H. Zhang, and L. Sheng, “Research and Design on Peer Selection
Strategy of P2P Streaming,” in Proceedings of 5th International
Conference on Wireless Communications, Networking and Mobile
Computing, pp. 1-4, Sept. 2009.

[9] J. Ghoshal, M. Wang, L. Xu, and B. Ramamurthy, “Variable neighbor
selection in live peer-to-peer multimedia streaming networks,” in
Proceedings of 5th International Conference on Broadband
Communications, Networks and Systems: pp. 344-346, Sept. 2008.

[10] T.-H. Hsiao, M.-H. Hsu, and Y.-B. Miao, “Adaptive and Efficient Peer
Selection in Peer-to-Peer Streaming Networks,” in Proceedings of
Parallel and Distributed Systems (ICPADS), IEEE 17th International
Conference on, pp. 753-758, Dec. 2011.

[11] B. Melander, M. Bjorkman, and P. Gunningberg, “A New End-to-End
Probing and Analysis Method for Estimating Bandwidth Bottlenecks,” in
Proceedings of IEEE Global Telecommunications Conference, Vol. 1, pp.
415-420, Nov. 2000.

[12] Y. Zhou, D.-M. Chiu, and J. C. S. Lui, “A Simple Model for Chunk-
Scheduling Strategies in P2P Streaming,” IEEE/ACM Transactions on
Networking Vol. 19, No. 1, pp. 42-54, Feb. 2011.

[13] N. Magharei, and R. Rejaie, “PRIME: Peer-to-Peer Receiver-Driven
Mesh-Based Streaming,” IEEE/ACM Transactions on Networking Vol.
17, No. 4, pp. 1052-1065, Aug. 2009.

[14] C. K. Lee, W. Hyun, and S. G. Kang, “Adaptive chunk scheduling
method for P2P-based multimedia streaming service,” in Proceedings of
6th International Conference on Computer Sciences and Convergence
Information Technology (ICCIT), pp. 91-94, Nov. 2011.

[15] IP Location Finder: http://www.iplocation.net/, Accessed Aug 2016

[16] OMNET++: http://www.omnetpp.org/, Accessed May 2016.

[17] Chunghwa Telecom: http://www.cht.com.tw/, Accessed May 2016.

