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Abstract—This study proposes a setting method otivenessCp in IPSO. The propose@p is a linear func-
the important parameter which influences the optimizatiotion proportional to the generation step and does not need
ability on an Independent-minded Particle Swarm Optiadditional parameters. We apply the IPSO using the pro-
mization (IPSO). The proposed parameter is a linear funposedC p to various benchmark problems used widely in
tion proportional to the simulation step. We confirm thathe literature, and we confirm that the proposed method can
although it is very simple and does not need additional pabtain better results than the conventional IPSO u€ipg
rameters, the proposed IPSO obtains better results than tet carefully. In addition, we carry out simulations with
standard PSO and the conventional IPSO, for the multchanging maximum simulation steps and investig#iece
modal functions. From these results, we do not need cortiveness and robustness of IPSO with the prop&pd
plicated settings of the parameters and can easily use the

IPSO.
2. Independent-minded Particle Swarm Optimization

(IPSO)
1. Introduction
In the algorithm of the PSO, multiple potential solutions
Particle Swarm Optimization (PSO) [1] is an optimiza-called “particles” coexist. Each particiéi = 1,2,--- , M)
tion algorithm based on a swarm intelligence. Multiplehas two information; position and velocity, represented by
solutions called as “particle” search the optimum solutior; = (X1, -+ , Xd, -+ , Xip) @andV; = (Vit,--- ,Vid,- - , Vip)
with flying around search space. Since each particle fligdl = 1,2, --- , D), respectively. At each time step, each par-
toward its personal best positipbestand the best position ticle flies toward its own past best positigubgs) and the
among the whole swargbest all the particles of the stan- best position among all particleghies}). In other words,
dard PSO are fully-connected and always influence eathey always influence each other. On the other hand, the
other. particles of IPSO have independence, thus, it is decided
On the other hand, various topological neighborhoodstochastically whether they are connected to others at ev-
for PSO have been considered [2—6]. In these papers, eaaly step. In other words, they are not alwagfeeted by the
particle shares its best position among neighboring partwarm and theipbestdoes not alwaysfiect the swarm.
cles on the network. It is an application of the network
topology to the particle swarm, and investigations of thg 1 Algorithm of IPSO
suitable network for PSO have attracted attention in these
years [7,8]. (Stepl) (Initialization) Let a generation step = 0.
Our previous study has proposed a novel application &andomly initialize the particle positiorX; (X; €
the complex network to PSO; an Independent-minded Pdmin, Xmax]°), initialize its velocityV; to zero, and initial-
ticle Swarm Optimization (IPSO) [9]. The most importantize P; = (pi. Pi2. - - - , pip) With a copy ofX;. Evaluate the
feature of IPSO is that it is decided stochastically that eaabbjective functionf (X;) for each particlé and findPy with
particle depends @bestor becomes independent from thethe best function value among all the particles.
swarm and moves depending onlymlest In other words, (Step2) Decide whether each particieis connected to
the particles are not always connected each other, and thbg others according to randhich is a random number
act with self-reliance. IPSO was applied to various probte (0, 1)) for the particlel. If rand < C, the particle i is
lems, and it has been confirmed that IPSO fieaive connected to other particles. If not, the particle i is iso-
for complex problems with numerous local optima [11]lated from the swarm, then, it and others do ngéet each
Meanwhile, a cooperativeness @ida@entCp, which is the other. Cpis a constant cooperativeness fiméent which
independence probability of the particles, is the importans the independence probability of the particles.
parameter and influences the performance of IPSO, and8tep3) Evaluate the fitnes$(X;) for each particlé. Up-
needs careful setting depending on problems. date the personal best positigbesj asP; = X; if (X)) <
This study proposes a setting method of the cooperd{P;).
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(Step4) Let P, represents the best posititlest with the From these reasons, in early stage of the simulation, it is
bestpbestamong particles being connected to others. Upeffective to grow the diversity (as sméllp) because global
datelbestP, = (pi1, pi2, - - . » Pip) according to search is flicient. In contrast, in late stage of the simu-
lation, it is dfective to increase the convergence speed by
growing the searching ability arouttioest(as largeC p).

Based on these considerations, we define the Coopera-
tivenes<C p as following equation.

| = arg n?inf(Pi), rand < Cp. Q)

In other words, even if the (P;) is the minimumpbest
among all the particlesdbestis not updated if is not con-
nected to others.

1
(Step5)UpdateV; andX; of each particlé according to CplH = +t, (3)
WVi(h) -+ cara(Pi = Xi(0) This is a linear function proportional to the generation step,
Vit+1)= +C2r2(Pr = Xi(t)), rand < Cp and although it is very simple and does not need additional
WVi(t)  +cura(Pi = Xi(t)), rand > Cp parameters, it satisfies the consideration described above.
Xi(t + 1) = Xi(t) + Vi(t + 1) (2)

wherew is the inertia weight determining how much of the4. Simulation experiments

previous velocity of the particle is preserved; andc;

are two positive acceleration ddieients, generallyg; = In order to investigate the proposed Cooperative@gss
C,. r, andr, ared-dimensional uniform random number We apply it to four benchmark problems summarized in Ta-
vectors fromU(0, 1). These equations mean that whetheple 1. f1 is an unimodal function, ant—f, are multimodal
each particle isféected bylbestis decided at random with functions with numerous local minima. The optimum so-
the cooperativenesgp. WhenCp = 0, all the particles lution X" of all the functions are [®, --- , 0], and its opti-
move depending only on owsbest and wherCp = 1, the mum valuef(X*) is 0. All the functions havé variables,

algorithm is completely the same as the standard PSO. inthis studyD = 30. The proposed IPSO is compared with
(Step6)Lett =t + 1 and go back to (Step2)ifhas not yet the standard PSO and IPSO. For all PSOs in all the simula-

reached the maximum generation step. tions, the population sizkl is set to 36, and the parameters
are set asv = 0.7 andc; = ¢, = 1.6. The Cooperativeness
2.2. Influence of Cooperativenes€ p on optimization  Cp of the conventional IPSO are set@p = 1.0, 0.6, 0.4
performance and 0.06 which are appropriate values forf,, f3 and f4,
respectively [10]. The maximum generation is set at 3000,

In order to investigate the influence of the cooperative;, the results are evaluated in an achievement rate of the
nessC p on optimization performance, our previous study. i ion attainment over 100 trials

appli(_ad various beqchmark proplems containing uniqual Table 2 summarizes the mean fitnd$¢®), the best fit-
funptlons and muItlmodaI. functions. In the results W't.hness and the achievement rate[%] of the standard PSO, the
variousCp, Cp = 1.0 obtained the best result on the uni-
modal function. In contrast, on the multimodal function
IPSO obtained morefiective results when the particles
were little @fected bygbest than in case of fully-connected
(Cp=1.0). Furthermore, it was clear that IPSO fEeetive
method for the multimodal functions. On the other han
because the results depend on the kind of problems, it
important to set the value & p appropriately.

conventional IPSO (constCp) and the proposed IPSO
(time-variableC p). We can see that in the unimodal func-
tion f1, the standard PSO, which is exactly same as IPSO
with Cp = 1, obtained the best result. However, since the
roposed IPSO also obtained the perfect achievement rate,
I can obtain enough result as the optimization result. In
tie results of the multimodal functiorfs and f3, because
PSO using the time-variablé p obtained the best results,
we can conclude that the linear function proportional to the
3. Consideration of appropriate value of Cooperative- simulation step is fective setting method of the Cooper-
nessCp. ativenesCp. We do not need complicated settings of the

arameters which influences the optimization performance,

This stgdy Proposes the setting method_ of appropria fien we can easily use the IPSO by using the time-variable
Cooperativeness pin IPSO. From characteristics of IPSOCp In addition, because IPSO with time-variakle can

described by Eq. (2), we consider relationship bet@en obtain better results than IPSO with the constaptcare-

and the performance as follows. fully set, it is dfective for escaping from the local optima
Small Cp: to varyC p during the simulation.

Searching ability around eagbestbecomes high because Next, Fig. 1 shows convergence of three PSOs. We can
the particles are attracted only pbest Diversity is high. see that IPSOs obtained better results than the standard

Large Cp: PSO, on the multimodal functions, and IPSO with time-
Searching ability around eadibestbecomes high because variableC p converged with same speed as the conventional
the influence ofbestgrows. Diversity is low. IPSO. From these results, we can conclude that the pro-
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Table 1: Four Test Functions.

Function name  Test Function Initialization Space  Criterion
D
Sphere; f1(X) = Z %, X € [-5.125.12°>, 0.01
d=1
D
Rastrigin; fo(X) = Z (x§ - 10 cos(2xq) + 10), X € [-5.12,5.12]°, 50
d=1
D-1
Ackley; f3(X) = (20 + €— 206702 V050G +x,,)
d=1
_ O.5(cos(2rxd)+cos(2rxd+1))) i X e [_30, 3O]D, 1.0
D-1
Stretched V;  f4(X) = Z(xﬁ +3G,1)°% (1+ sinf(500G + x4,7)*"). X e [-10,10]° 10
d=1

Table 2: Comparison results of 3 PSOs on 4 test functions. IPSOQged 1.0, 0.6, 0.4 and .06 for f; f, f3 and fy,
respectively.

IPSO IPSO
f PSO (const.Cp) (time-variableCp)
Mean 3.38e-48  5.10e-50 1.77e-26
f1 Min 2.39e-57 1.44e-55 9.62e-29
Achievement| 100% 100% 100%
Mean 63.40 39.83 34.92
fa Min 34.82 14.92 15.92
Achievement| 37% 89% 95%
Mean 73.14 12.84 9.02
f3 Min 5.16 4.09e-11 5.24e-14
Achievement 0% 52% 32%
Mean 21.76 9.36 7.01
f4 Min 6.27 2.37 0.80
Achievement 6% 62% 79%
posed IPSO can realize the searching ability of the conven- References

tional IPSO.
[1] J. Kennedy and R. C. Eberhart, “Particle swarm opti-
mization,” inProc. of IEEE. Int. Conf. on Neural Netw.

5. Conclusions pp. 1942-1948, 1995.

This study has proposed the setting method of the inf2] J. Kennedy and R. Mendes, “Population structure and
portant parameter which influences the optimization abil-  particle swarm performance,” iRroc. of Cong. on

ity on the independent-minded particle swarm optimization  Evolut. Comput.pp. 1671-1676, 2002.

(IPSO). The proposed parameter is the linear function pro-

portional to the simulation step. Although it is very sim-[3] R. Mendes, J. Kennedy and J. Neves, “The Fully In-
ple and does not need additional parameters, the proposed formed Particle Swarm: Simpler, Maybe Better,” in
IPSO obtained better results than the conventional IPSO, |EEE Trans. Evolut. Compytvol. 8, no.3, pp. 204—
for the multimodal functions. We do not need the com- 210, June 2004.

plicated settings of the parameters and can easily use th? o ,

IPSO. By using IPSO, we can obtain significantfieetive [4] J. Lane, A. Engelbrecht and J. Gain, “Particle Swarm

performance, compared with the standard PSO. Optimization with Spatially Meaningful Neighbors,”
in Proc. of IEEE Swarm Intelligence Symposjum
pp. 1-8, 2008.

Acknowledgments

[5] S. B. Akat and V. Gazi, “Particle Swarm Optimiza-
This work was supported by KAKENHI 24700226. tion with Dynamic Neighborhood Topology: Three

- 156 -



207 [ =
< T 5
< U =
ey sl 3
S IPSO(L) sl 3
& |- IPSO(linear) g E
E N ~ L:
0 500 1000 1500 2000 2500 3000
Timestep t
@
10°
E"/ 2 \\ X E“/
L I =
- ~ -
=) N =
S 1nt Soo o~
2 107 - - -psO | T Tmmimimmimimimmmimm - 3
< 1PSO(0.4) <
i I R 1PSO(linear) i
10 : ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000
Timestep t
(©)

---PSO
N 1PSO(0.6)
“\\ ‘‘‘‘‘ IPSO(linear)
\ So
102 \\ \\
_____ ',\_~,:_________________
101 L L L L L
500 1000 1500 2000 2500 3000
Timestep t
(b)
10
AN\
\\ ‘\/
D
101 N
---psc | T T
1PSO(0.06)
‘‘‘‘‘ IPSO(linear)
10° . y y y y
0 500 1000 1500 2000 2500 3000
Timestep t
(d)

Figure 1: Meartf (Pg) of 100 trials, depending on the time stega) Sphere function. (b) Rastrigin function. (c) Ackley’s
function. (d) Stretched V sine wave function.

(6]

[7]

(8]

9]

Neighborhood Strategies and Preliminary Results,” in
Proc. of IEEE Swarm Intelligence Symposjyp. 1-8,
2008.

H. Matsushita and Y. Nishio, “Network-Structured Par-
ticle Swarm Optimizer with Various Topology and its
Behaviors,” inLecture Notes in Computer Science
vol. 5629, pp. 163-171, 2009.

J. Kennedy, “Small worlds and mega-mindsfeets
of neighborhood topology on particle swarm per-
formance,” in Proc. of Cong. on Evolut. Comput.
pp. 19311938, 1999.

H. Matsushita and Y. Nishio, “Network-Structured Par-
ticle Swarm Optimizer with Small-World Topology,”
in Proc. of Int. Symposium on Nonlinear Theory and
its Applications pp. 372-375, 2009.

H. Matsushita, Y. Nishio and T. Saito, “Particle Swarm
Optimization with Novel Concept of Complex Net-
work,” in Proc. of Int. Symposium on Nonlinear Theory
and its Applicationspp. 197-200, Sep. 2010.

[10] H. Matsushita, Y. Nishio and T. Saito, “Behavior

of Independent-Minded Particle Swarm Optimization,”
in Proc. of RISP International Workshop on Nonlin-
ear Circuits and Signal Processingp. 103-106, Mar.
2011.

[11] H. Matsushita, Y. Nishio and T. Saito, “Application

of Independent-Minded Particle Swarm Optimization

to Parameter Search in Switched Dynamical Systems,”

- 157 -

in Proc. of Int. Symposium on Nonlinear Theory and
its Applications pp. 631-635, Sep. 2011.





