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Abstract—In nonlinear dynamical systems, peri-
odic orbits meeting a saddle-node bifurcation may gen-
erally disappear, and they are going to be a chaotic
orbit, other periodic solutions, and divergence or equi-
librium points. However, right after the bifurcation,
some orbits transitionally wonder around the trace of
the saddle and node periodic orbits, i.e., the orbit stays
long around the trace, then eventually movies to the
other stable attractor. We direct our attention to this
phenomenon, a controller keeping a periodic solution
regardless of the saddle-node bifurcation. To realize
this, the external force control technique has been ap-
plied. Some numerical simulation results are given.

1. Introduction

Various methods have been available for controlling
chaos. As one of the most famous technique, a de-
layed feedback control (DFC) method has been de-
veloped [1]. This is a method of controlling chaos in
continuous dynamical systems and it stabilizes the de-
sired unstable periodic orbit (UPO) by providing the
feedback composed of the difference between the cur-
rent state and the delayed state. Advantages of the
DFC are that (1) the parameter, which is necessary
for control, is only period τ of the UPO, (2) no sta-
bility analysis of the UPO is required, and (3) it is
relatively easy to implement the controller by using
the memory hardware.

As the other control technique, the OGY method [2]
has been proposed. Utilizing the recurrence proper-
ties of chaotic dynamics can stabilize UPOs. Since the
trajectory may approach neighborhood of any UPO
in the transient state of chaos a controller based on
linear control theory works well, that is, and the dis-
tance (error) between the current position of the chaos
and the UPO is applied into the system as a control
input. By choosing appropriate feedback gain, the
UPO can be stabilized with reasonably small ampli-

tude of the control input. Various methods includ-
ing delayed feedback control (DFC) [1], external force
control (EFC) [3], occasional proportional feedback
(OPF) [4], and so on [5–9] have been proposed.

These control techniques are intended to stabilize
UPOs. They are embedded into the chaotic attractor
originally. Above control methods absolutely require
this existence of UPOs. However, no one has inves-
tigated the case that UPOs are disappeared by the
parameter variations.

The saddle-node bifurcation is phenomena that two
orbits are collided by variation of parameters. When
happened this, these orbits are disappeared. How-
ever just after the bifurcation, attraction regions of
the trace of the periodic orbit are still remained. In
fact, even as the periodic solution occurred the bifur-
cation does not exist in theory, the trajectory tends to
wrap around the orbit near one.

In this paper, we propose the controller on com-
pensation of attractors vanished by the saddle-node
bifurcation. By using the features of the trace of pe-
riodic orbits and applying the EFC method, we try
to stabilize the periodic solution occurred saddle-node
bifurcation. In general, when the saddle-node bifur-
cation occurs, the other attractor captures the orbit
after a transitional state. By applying this method, it
may be possible to reduce such damage.

2. Saddle-node bifurcation and the subsequent
response

In nonlinear dynamical systems, there is a saddle-
node bifurcation that is one of the most represen-
tative of the local bifurcations. When a real mul-
tiplier of the limit cycle exceeds unity, this bifurca-
tion is occurred. The condition of this is expressed by
µi = 1, ∃i = 1, . . . , n. If a saddle-node bifurcation oc-
curs, a couple of periodic orbits are disappeared, and
many cases are happened, i.e., the orbit is captured by
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Figure 1: The phase portrait (k = 0.2, B0 = 0.27,
B = 0.28).

other periodic orbit, chaotic attractor or equilibrium
points, or divergence. We show the saddle-node bifur-
cation in the Duffing equation [10] as an example. The
Duffing equation is a two dimensional non-autonomous
system as follows:

ẋ = y
ẏ = −ky − x3 +B0 +B cos(t)

. (1)

Here, x = (x, y)⊤ is the state variable, k, B0, B repre-
sents a parameter. The bifurcation analysis has been
already investigated, and the bifurcation structure was
clarified in detail [11]. Now, we assume parameters as
k = 0.2, B0 = 0.27, and B = 0.28, the Duffing equa-
tion shows three periodic orbits shown in Fig. 1. In
the figure, a stable periodic orbit of blue, red indicates
the unstable periodic orbit. Each colored circle repre-
sents the fixed point of the Poincaré map. The back-
ground depicts a basin boundary in each of the initial
value, and orbits in the white initial points converge
to the inner periodic orbit. When increase the param-
eter B0, inner two periodic orbits gradually approach,
and overlap. At this time, these periodic orbits disap-
pear by a saddle-node bifurcation. Detail information
of the saddle-node bifurcation is shown in Tab. 1.

The periodic orbit is qualitatively disappeared when
saddle-node bifurcation is occurred. However, in the
parameter immediately after the occurrence, periodic
orbit does not exist, but any attraction area of trace
of periodic orbits remains. Figures 3 show trajecto-
ries after the saddle-node bifurcation. From these fig-
ures, it is confirmed that the trajectory is wrapped
around the periodic orbit that caused the saddle-node
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Figure 2: The phase portrait before and after the
saddle-node bifurcation (K = 0.2, B = 0.28).

Table 1: Saddle-node bifurcation information (param-
eter generation, coordinate, characteristic multiplier).

Parameters k = 0.2, B0 = 0.279, B = 0.28
Coordinate x0 = (−0.425, 0.413)
Multiplier µ0 = 0.081, µ1 = 1

bifurcation for a finite period of time. However, the
trajectory away from it gradually, and finally the tra-
jectory converges the outer large stable periodic orbit.
We want to try the stabilization of the periodic orbit
that occurred the saddle-node bifurcation by adding
the control input to the system.
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Figure 3: The trajectory after the saddle-node bifurca-
tion (K = 0.2, B0 = B = 0.28, x(0) = (−0.3, 0.3)⊤).
It is confirmed that the trajectory is wrapped around
the periodic orbit that does not actually exist for a
finite period of time.

Figures 4 are distance coloring diagrams and the
color map diagram. Where, in Fig 4(a), each axis
shows initial position x(0), and, circles mean the sta-
ble periodic point and the bifurcating fixed point. In
the distance coloring, the pixel is drawn with color de-
pending on the distance between the initial position
and Poincaré map of it. Figure 4(b) shows the color
map of the distance, and, the distance of the map is
short in the blue region. By these figures, the feature
point that does not move really exists around the bi-
furcating fixed point. Therefore, it also seems that any
attraction area of trace of periodic orbits remains.
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Figure 4: (a):Distance coloring diagram, (b): color
map diagram.

3. EFC method

In this paper, using the external force control (EFC)
method as a control technique. One of the most fa-
mous techniques is the delayed feedback control (DFC)
method. The DFC method feed back the state in de-
lay time T . However, EFC method feed back the arbi-
trary orbit. Thus, the target trajectory is determined.
By doing this, the system is stabilized to objective
orbits, and the pseudo periodic solution is constant,
so accuracy of controller can be improved. However,
it is necessary that the target trajectory is a clear in
preliminary. Analytic information is required, but it
can be computed by using Poincareé map and New-
ton’s method. One can get analytic information easily.
Equations of controller are expressed as follows:

ẋ(t) = f(x(t)) + u(t), u(t) = K(x∗(t)− x(t)), (2)

where, K ∈ Rn×n is the control gain, x∗(t) ∈ Rn

is the target orbit, u(t) ∈ Rn is control input. Note
that the time series data of the pseudo periodic orbit
is the trajectory data just before the saddle-node bi-
furcation. It does not exist in the parameter, but the
error ξ(t) is expected to be small when the orbit stays
around the trace.

4. Results

We show some results of the attractor-preserving
controlling. The target system is the Duffing equation
(Eq. 1), and parameter are k = 0.2, B0 = B = 0.28.
In this parameter, the system shows large stable peri-
odic orbit. By adding the control input that is shown
Eq. 2, the trace of periodic orbit is stabilized. The
pseudo periodic solution x∗ is shown by Fig. 5.

Figure 6 shows the phase portrait of orbits that
is controlled. Initial values of each trajectory are
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Figure 5: The pseudo periodic solution x∗ (B0 =
0.279, x∗ = (0.425, 0.413)⊤).

(±1.2, ±1.2). It is confirmed that trajectories are con-
verged to the pseudo periodic solution x∗ in each ini-
tial value. Note, the feedback gain is K = 0.3I, where
I is an 2× 2 identity matrix.
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Figure 6: Phase portrait of the trajectory with control
(K = 0.3I, I means a unit matrix.).

Figures 7 shows the time response of the controlled
system. The amount of the control input u(t) is
quickly decreased in the large, and x(t) is converged
into the referenced periodic solution x∗(t). Figures
8(b) is an enlargement of the stationary state in Fig.
8(a) and it depicts a very small amplitude periodic
ripple. The system in this state is equivalent to the
original equation with a very small periodic perturba-
tion. It is noteworthy the pseudo periodic solution is
preserved by this tiny control energy.

We numerically confirm that u(t) is kept small if
the system parameter is changed little bit. This may
suggest the controller is robust. From Fig. 6, the EFC
technique can be control to x∗(t) at any initial coordi-
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Figure 7: Time pulse trains of orbits (x(0) =
(1.2, 1.2)⊤). Gray lines show the pseudo periodic so-
lution x∗.

nate. Thus, the controller provides good performance.
However, the system has a large-scale periodic orbit
originally, but it is hidden because the controller pro-
foundly affects one. In our feature works, we want
to design the controller that the referenced periodic
solution coexists with the original solution.

5. Conclusion

In this study, we discuss the compensation of attrac-
tors vanished by the saddle-node bifurcation.

Firstly, we show the saddle-node bifurcation and dis-
appearance of the periodic orbit. Just after the bifur-
cation, the attraction region with the trace of periodic
orbit remains, and so we try the stabilization of the
trace of the periodic orbit. We use the EFC method,
and the periodic orbit that is point of the saddle-node
bifurcation as the state feedback. It is necessary the
analytic approach to feed back the periodic orbit, but
you can compute by using the Poincaré map and New-
ton’s method. Next, we show simulation results. Using
the EFC method can stabilize the trace of periodic or-
bit. By this way, we can show the compensation of at-
tractors vanished by the saddle-node bifurcation. The
EFC method is forceful controller, and it can be con-
verge to the pseudo periodic solution from any initial
points. By these results, the EFC method is helpful
technique on compensation of attractors vanished by
the saddle-node bifurcation.
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Figure 8: Control input (x(0) = (1.2, 1.2)⊤).
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