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Abstract– The number of particles affects the searching 
diversity of particle swarm optimization (PSO) directly. 
Therefore, if PSO is implemented on a useful searching 
conception, the increment of particles is the simplest way 
to improve the searching ability. However, if PSO does not 
have an enough control of the swarm behavior, the 
increment of particles cannot produce the searching 
diversity effectively.  

In this paper, we propose a novel PSO which consists of 
normal particles and searching particles. The searching 
particles are non-convergent ones. Since they are used to 
control the searching direction and resolution, our PSO can 
produce the searching diversity effectively and maintain it. 
Finally, it has been confirmed by numerical simulations 
that our PSO has a high searching ability. 
 
1. Introduction 
 

PSO is an optimization method originally developed by 
Kennedy and Eberhart in 1995[1]. Each particle in the 
original PSO (O-PSO) moves, considering the personal 
best position (PBP) and the global best position (GBP). 
PBP is the position of the best solution in each particle 
and GBP is the position of the best solution in all the 
particles (i.e., swarm). As a result, all the particles can 
swarm to search the optimal solution. Moreover, since the 
algorithm is defined by only update equations of the 
position and velocity of each particle, it is simple and the 
calculation cost is very small. Therefore, PSO has been 
applied to various optimization problems in non-linear 
systems [2,3] and many PSO models based on O-PSO 
have been proposed [2,4-6]. 

The number of particles affects the searching diversity 
of PSO directly. Therefore, if PSO is implemented on a 
useful searching conception, the increment of particles is 
the simplest way to improve the searching ability. 
However, if PSO does not have an enough control of the 
swarm behavior, the increment of particles cannot produce 
the searching diversity effectively. This is because the 
searching direction and resolution are restricted. As a 
result, it is possible that PSO with a vast number of 
particles cannot find even a semi-optimal solution. 

Most of recent PSO models improve their searching 
ability by not increasing particles but controlling the 
moves of particles. For example, the control methods are 
the following: the escape from the local minima by adding 
new particles [7,8], the restriction of information 
propagation between particles by the network structure [9], 

and the control of parameters [2,4]. However, even these 
models cannot maintain the searching diversity at all time 
and the searching direction is basically restricted so that 
the particles approach PBP and GBP. 

In this paper, we propose a novel PSO based on the 
design idea that the searching diversity is effectively 
produced by controlling the searching direction and 
resolution and the searching ability is improved by 
maintaining the diversity. Since our PSO consists of 
normal particles and searching particles, we call it PSO-
NSP. The normal particles approach PBP and GBP as well 
as O-PSO and the main role is the local search. On the 
other hand, the searching particles are non-convergent 
ones which search the solution space according to the 
above design idea. The main role is the global search. 
Especially, the searching particles give PSO-NSP a high 
ability to escape from local minima. Finally, it has been 
confirmed by numerical simulations that PSO-NSP has a 
high searching ability. 
 
2. Original PSO 
 

The dynamics of original PSO (O-PSO) [1] is given by  
)()( ,,22,,,11,

1
,

t
dj

t
d

t
dj

t
dj

t
dj

t
dj

t
dj

t
dj xgrcxprcwvv −+−+=+ , (1) 

1
,,

1
,

++ += t
dj

t
dj

t
dj vxx ,    (2) 

where xt
j,d and vt

j,d are the d-th dimensional position and 
velocity of the j-th particle at the t-th iteration respectively. 
pt

j,d and gt
d are the d-th dimensional positions with the best 

evaluation value found by the j-th particle and the swarm 
until the t-th iteration, which are called the personal best 
position (PBP) and the global best position (GBP) 
respectively. w is an inertia weight coefficient. c1 and c2 
are acceleration coefficients. r1

t
j,d and r2

t
j,d are uniform 

random numbers in the range [0,1]. Also, it is known that 
setting the parameters (i.e., w, c1, c2) to the following 
values is good for O-PSO [10]. 
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Now let us consider the behavior of a particle using the 
above values. In Eq.(1), the first term generates the move 
by the inertia. The second and third terms generate the 
moves toward PBP and GBP respectively. For the sake of 
simplicity, we explain the effect of each term.  

As  the  i t e ra t ion  p roceeds ,  the  f i r s t  t e rm i s 
asymptotically close to zero because w is smaller than one. 
Moreover, a large w can produce the global search at the 
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Fig.1 A particle behavior in O-PSO under the condition 
that there is the only second term in Eq.(1). 
 
early iterations. 

The maximum move distance by the second term is 
c1(pt

j−xj
t), where pt

j≡[pt
j,d]∈ℜD, xj

t≡[xt
j,d]∈ℜD, and D is 

the number of dimensions of the solution space. As shown 
in Fig.1, the particle moves across PBP every one-
iteration. Even if the maximum move is continued, the 
particle converges to PBP finally because 1≤c1<2. 

The third term makes the particle converge to GBP on 
the basis of the mechanism similar to the second term. 

From these facts, we can find the following. The 
particles perform the global search all over the solution 
space at the early iterations. Afterwards PBP is close to 
GBP and the particles perform the local search around 
PBP and GBP. They converge to GBP finally. Therefore, it 
is clear that O-PSO produces the searching diversity from 
the interactions between three terms in Eq.(1). 
 
3. PSO with Normal and Searching Particles 
 
3.1. Proposition 
 

The design idea of our proposed PSO (i.e., PSO-NSP) 
is that the searching diversity is effectively produced by 
controlling the searching direction and resolution and the 
searching ability is improved by maintaining the diversity. 
PSO-NSP is implemented as follows. 

First, we explain the structure of PSO-NSP. It consists 
of normal and searching particles. A normal particle is 
grouped with Nsp searching particles. Therefore, if there 
are Nnp normal particles, the number of all the particles is 
Nnp(Nsp+1). Moreover, since a normal particle has the best 
evaluation value in the grope, the normal particle and a 
searching particle may interchange during the searching 
process. 

Next, we explain the roles of normal and searching 
particles. The normal particles search around PBP and 
GBP according to O-PSO. The main role is the local 
search. On the other hand, the searching particles are not 
guaranteed to converge and they accept the search based 
on the above design idea. Specifically, the parameters are 
controlled so that the searching particles are permitted to 
not only approach but also escape from GBP and they 
search by various resolutions as shown in Fig.2. Moreover, 
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Fig.2 Conceptual illustration of searching direction and 
resolution for a searching particle. 
 
the searching diversity is effectively produced by 
changing the parameters periodically. Therefore, the main 
role is the global search. Especially, the searching 
particles give PSO-NSP a high ability to escape from local 
minima. 

The local search by normal particles and the global 
search by searching particles always coexist in PSO-NSP. 
Therefore, it can be expected that PSO-NSP have a high 
searching ability. 
 
3.2. Searching Particles Based on O-PSO 
 

The dynamics of a searching particle is given by 
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where n is the index of normal particles (or groups) and s 
is the index of searching particles. From Eq.(4), it is clear 
that the base point of search is GBP. The inertia weight 
coefficient wt and the acceleration coefficient c2

t
n,s,d are set 

as follows. 
The inertia weight coefficient wt is given by 

2/)1)2(cos(max += ftwwt π ,   (6) 
where wmax=0.9 and f=0.01. Therefore, the effect of the 
inertia is periodically changed. This means that the 
searching resolution is periodically changed. 

The acceleration coefficient c2
t
n,s,d is set to an uniform 

random number in the following range: 
]5,0[,,2 ∈t

dsnc .     (7) 
c2

t
n,s,d is changed when the searching particle satisfies any 

one of three conditions. The first condition is that Tsp 
iterations have been executed after the last change. The 
second condition is that a normal particle and a searching 
particle interchange. The third condition is that the 
position xt

n,s,d or the velocity vt
n,s,d is over the range B. 

Now, we explain the effect of the second term in Eq.(4) 
applying Eq.(7). Since r2

t
n,s,d is uniform random numbers  
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Fig.3 Conceptual illustration of searching characteristics 
by w2

t
n,s,d (≡ c2

t
n,s,d⋅r2

t
n,s,d) under the condition that there is 

the only second term in Eq.(4). 
 
in the range [0,1], c2

t
n,s,d⋅r2

t
n,s,d ≡ w2

t
n,s,d∈[0,5] is satisfied. 

Fig.3 shows the searching characteristics by w2
t
n,s,d. If 

w2
t
n,s,d < 2, the searching particle approaches GBP; 

otherwise it escapes from GBP. Moreover, if w2
t
n,s,d is 

close to and not equal to 0 or 2, the searching resolution 
becomes fine. Although w2

t
n,s,d cannot be directly 

controlled, c2
t
n,s,d can restrict the range of w2

t
n,s,d. Therefore, 

the searching direction and resolution can be controlled by 
c2

t
n,s,d  to some extent. For example, if c2

t
n,s,d is set to 5, 

there is strong possibility that the searching particle 
escapes from GBP and the searching resolution becomes 
rough. 
 
3.3. PSO-NSP Algorithm 

PSO-NSP algorithm is as follows. 
1) The iteration count t is set to zero. 
2) The position x and velocity v of all the particles are 

uniformly randomly initialized in the range B. 
3) Calculate the evaluation value for each particle. It is 

kept as the personal best (PB). Also, the position is 
kept as the personal best position (PBP). 

4) In the n-th grope, the particle with the best PB is the 
normal particle. Others are the searching particles. 

5) Detect the global best (GB) and the global best 
position (GBP). 

6) The update counter of each searching particle (Cn,s) is 
set to zero. 

7) Set the parameters of each particle using Eqs.(3), (6), 
and (7). 

8) Update x and v of each particle. The normal particles 
use Eqs.(1) and (2). The searching ones use Eqs.(4) 
and (5). Also, execute t← t+1 and Cn,s← Cn,s+1. 

9) If the position x and the velocity v is over the range B, 
the new values of x and v are calculated by 
‘reflection’ and ‘cut off’ respectively. For example,  

4)56(5]5,5[6 =−−→⇒−≡∉= xx B ,  (8) 

5]5,5[6 →⇒−≡∉= vv B .   (9) 
Moreover, if a searching particle gives rise to a bound 
infringement at the d-th dimension, the acceleration 
coefficient c2

t
n,s,d is renewed. 

wt
2n,s,d

0 1 2 10) Update PB and PBP. 
11) If a searching particle has the best PB in the n-th 

grope, the searching particle and the current normal 
particle interchange. Although each of them maintains 
its current x and v, the new searching particle renews 
c2

t
n,s,d at all the dimensions and sets Cn,s to zero. 

12) Update GB and GBP. 
13) If Cn,s=Tsp, the corresponding searching particles 

renew c2
t
n,s,d at all the dimensions and set Cn,s to zero. 

Moreover, the uniform random numbers in the range 
A×B are added to their x and v, where A is a small 
positive number. 

14) If t=TPSO, the search is finished; otherwise go to the 
step 8. 

 
4. Numerical Simulations 
 

Simulations have been carried out to demonstrate the 
effectiveness of our proposed PSO (i.e., PSO-NSP). For 
the function optimization problems shown in Table 1, 
PSO-NSP is compared with O-PSO and O-PSO-R. O-
PSO-R is O-PSO with the reset function. Therefore, if all 
the particles have converged, O-PSO-R continues the 
search after reinitializing the position x and velocity v in 
the range B. However, this O-PSO-R cannot reinitialize 
PB, PBP, GB, and GBP. 

The parameters of each PSO model are as follows. In 
the case of O-PSO and O-PSO-R, w=0.729, c1=c2= 
1.49445. In the case of PSO-NSP, the normal particles 
have the same parameters as O-PSO. On the other hand, 
the searching particles have wmax=0.9, f=0.01, c2

t
n,s,d∈[0,5], 

Tsp=100, A=0.01. 
The other experimental conditions are as follows. The 

number of all the particles Np is set to 60 or 100. In the 
case of Np=60, PSO-NSP uses (Nnp, Nsp)=(10,5), (15,3), 
and (30,1). In the case of Np=100, PSO-NSP uses (Nnp, 
Nsp)=(10,9), (20,4), and (50,1), where Nnp means the 
number of normal particles or gropes and Nsp is the 
number of searching particles with which a normal 
particle is grouped. The number of search trials in each 
system is 500 and the maximum number of iterations TPSO 
in each trial is 10000. The search in a trial is successful if 
the squared error between GB and the optimal solution is 
smaller than 0.001. 

Tables 2 and 3 show the simulation results. GBave is the 
average of GB. SR is the success rate. When the search 
has been successful, we check the iteration count. ITRmed 

is the median of the iteration count under SR≥0.9. From 
these results, we have found the following. Comparing 
with O-PSO and O-PSO-R, PSO-NSR has higher 
searching ability. Also, as the particles increase, the 
tendency becomes strong. However, the performance of 
PSO-NSR depends on the combination of Nnp and Nsp. 
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Table1 Benchmark problems for numerical simulations (D=30). 
Function name Formula Domain (B) Minimum value 
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Table 2 Performance comparisons (Np = 60). 

Rastrigin (f1) Rosenbrock (f2) Schwefel (f3) System Nnp, Nsp

GBave SR ITRmed GBave SR ITRmed GBave SR ITRmed
O-PSO --- 7.978e+1 0.0 --- 2.068e+0 0.214 --- -1.050e+4 0.0 --- 

O-PSO-R --- 4.771e+1 0.0 --- 2.122e+0 0.196 --- -1.133e+4 0.0 --- 

10,5 1.725e-11 1.0 2059 2.360e-2 0.428 --- -1.256e+4 0.956 5812 

15,3 2.376e-11 1.0 2294 1.578e-4 0.964 7187 -1.256e+4 0.908 6199 

PSO-NSP 

30,1 7.732e-12 1.0 3167 1.608e-7 1.0 5633 -1.249e+4 0.480 --- 

 
Table 3 Performance comparisons (Np = 100). 

Rastrigin (f1) Rosenbrock (f2) Schwefel (f3) System Nnp, Nsp

GBave SR ITRmed GBave SR ITRmed GBave SR ITRmed
O-PSO --- 6.914e+1 0.0 --- 1.654e+0 0.194 --- -1.073e+4 0.0 --- 

O-PSO-R --- 3.347e+1 0.0 --- 1.771e+0 0.196 --- -1.142e+4 0.0 --- 

10,9 4.342e-12 1.0 1256 6.774e-4 0.842 --- -1.257e+4 1.0 3347 

20,4 1.640e-12 1.0 1529 2.590e-7 1.0 4895 -1.257e+4 0.998 3818 

PSO-NSP 

50,1 5.021e-13 1.0 2167 4.060e-11 1.0 3993 -1.256e+4 0.950 6318 

 
5. Conclusions 
 

We have proposed PSO-NSP which consists of normal 
particles and searching particles. PSO-NSP uses the 
searching particles to control the searching direction and 
resolution and to maintain the searching diversity. From 
the results of simulations, it has been confirmed that PSO-
NSP has a high searching ability. 

In the future, we will consider an adaptive control of 
parameters and a new relationship between normal and 
searching particles to improve the searching ability. 
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