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Abstract—In our previous studies, we confirmed that
the deterministic PSO which was removed the stochastic
factors from the conventional PSO to analyze its dynam-
ics, has bad search performance comparing with the con-
ventional PSO. The cause is that the parameters in the de-
terministic PSO is time invariant, namely, each particle
doesn’t have diversity. Based on a golden angle property,
we propose a parameter setting procedure for the deter-
ministic PSO to generate diversity. In this article, we con-
firm the optimal solution search performance of proposed
parameter setting procedure using plural benchmark func-
tions.

1. Introduction

Searching for an optimal value of a given evaluation
function is very important. In order to solve such optimiza-
tion problems speedily, various meta-heuristic optimization
algorithms have been proposed. Particle swarm optimiza-
tion (PSO), which was originally proposed by J. Kennedy
and R. Eberhart [1], [2], is one of such meta-heuristic algo-
rithm. The PSO algorithm is a useful tool for optimization
problems [3]-[6].

The original PSO is described as

vt+1
j = wvt

j + c1r1(pbestt
j − xt

j) + c2r2(gbestt − xt
j) (1)

xt+1
j = xt

j + vt+1
j (2)

where w ≥ 0 is an inertia weight coefficient, c1 ≥ 0, and
c2 ≥ 0 are acceleration coefficients, and r1 ∈ [0, 1]N and
r2 ∈ [0, 1]N are two separately generated uniformly dis-
tributed random number vectors. xt

j ∈ RN denotes the
location vector of the j-th particle on the t-th iteration in
the N-dimensional parameter space, and vt

j ∈ RN denotes
the velocity vector of the j-th particle on the t-th iteration.
pbestt

j ∈ RN represents the location that gives the best
value of the evaluation function of the j-th particle on the
t-th iteration. gbestt ∈ RN is the location that gives the
best value of the evaluation function on the t-th iteration in
the swarm.

The particles in the swarm fly through the N-
dimensional space according with Eqs. (1) and (2). Each
particle shares information of a current optimal value of
the evaluation function and its corresponding location of

the best particle. Also, each particle memorizes its record
of the best evaluation value and its best location. On the ba-
sis of such information, the moving direction and velocity
are calculated by Eq. (1). Namely, all particles will move
toward a coordinate that gives the current best value of the
evaluation function.

The dynamics of the PSO systems is very complicated.
In order to analyze the dynamics of such PSO, Clerc, and
Kennedy proposed a simple deterministic PSO system, and
analyzed its dynamics theoretically [4]. The simple deter-
ministic PSO system does not contain stochastic factors,
namely, the random coefficients have been omitted from
the original PSO system. The analysis of such a determin-
istic PSO is very important for determining the effective
parameters of the standard PSO [4], [7].

Moreover, we are trying to implement the proposed sys-
tem by an electronic circuit [8]. Considering the imple-
mentation, it is desirable that the system does not contain
any stochastic factors. Therefore, we pay attention to a de-
terministic system. The simplicity acceleration coefficients
of the deterministic PSO system can be described as pt

j =
c1 pbestt

j + c2 gbestt

ψ
ψ = c1 + c2

(3)

where pt
j can be regarded as a desired fixed point.

In this case, Eqs. (1) and (2) can be transformed into the
following matrix form:[

vt+1
j

yt+1
j

]
=

[
w −ψ
w 1 − ψ

] [
vt

j
yt

j

]
(4)

where yt
j = xt

j − pt
j.

The dynamics of the particles of the deterministic PSO
is characterized by the eigenvalues λ as shown in Eq. (4).

λ =
(1 + w − c) ±

√
(1 + w − c)2 − 4w
2

(5)

The damping factor ∆ and the rotation angle θ are given by
the eigenvalues.

∆ =
√

w (6)

θ = arctan

√
4w − (1 + w − c)2

(1 + w − c)
(7)
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(a) Conventional PSO (b) Deterministic PSO

Figure 1: Diversity of the parameter in each PSO

The damping factor and the rotation angle are regarded as
the parameters of the deterministic PSO. Note that this sys-
tem does not contain stochastic factors, therefore, this sys-
tem can be regarded as a deterministic system.

2. Influence of a Random Number

Since the deterministic PSO does not contain stochastic
factors, the searching ability is deteriorated comparing with
the conventional PSO.

In deterministic PSO, random numbers are assumed to
be r1 = r2 = 1. On the other hand, since the value of
r1 and r2 is uniform random numbers in the conventional
PSO, an average is set to 0.5. Figure 1 shows the rela-
tionship of these parameters; w and c = c1r1 + c2r2. Note
that the parameters r1 and r2 of the deterministic PSO are
set as r1 = r2 = 0.5 to compare the performance with the
conventional stochastic PSO. The parameters set within the
triangular area in Fig. 1 to guarantee the stability of the sys-
tem. In the case of the deterministic PSO, the parameters
is given as a certain point. The parameters of the conven-
tional stochastic PSO are varies with the iteration, however,
the parameters of the deterministic PSO are time-invariant.

3. Deterministic PSO using a Golden Angle

We have proposed the parameters setting procedure
which the golden angle is applied to the rotation angle
to improve the performance of the searching ability. The
golden angle is the smaller of the two angles created by
sectioning the circumference of a circle according to the
golden ratio φ = 2π/(1 + 1+

√
5

2 ). In our proposed proce-
dure, the rotation angle of each dimension of the particle is
determined by the golden angle.

Applying the golden angle, the rotation angle does not
have an overlap, namely, the system has the diversity as
shown in Fig. 2(a). The radius corresponds to the damping
factor. Considering the parameter range of the conventional
stochastic PSO, the range of the rotation angle is normal-
ized as illustrated in Fig. 2(b). Similar to the conventional
PSO, the rotation angle parameter is set for each iteration

 0  0.854

(a) Diversity of the parameter by a
golden angle

 0  0.854

(b) Range of golden angle

Figure 2: The rotation angle θ acquired from a golden angle

t. The conventional PSO can discover good solutions when
the particles exhibit damped oscillations. For this reason,
we set the parameters of the deterministic PSO to generate
such damped oscillations. And we discuss a method for
the deterministic PSO to search the solution whose ability
is equivalent to the conventional PSO. The rotation angle
θ for every dimension d of each particle j is calculated as
follows. D is a dimension of an evaluation function.

θnt = { jD + (d + 1) + (t + 1)D}φ (8)

θ =
θnt (mod 2π)

2π
φ (9)

In this article, using such time-variant rotation angle, the
parameter setting procedure of the deterministic PSO is
proposed. w and c derived from the rotation angle by using
Eqs. (6) and (7).

4. Numerical Simulations

In order to confirm the performance of the procedure of
PSO which uses the golden angle, we compares with the
conventional PSO. We carry out the numerical simulation
for two cases. One is the deterministic PSO. The other one
is the golden angle is used for every iteration.

The numerical simulations are carried out by using eight
standard benchmark functions as shown in TABLE 1. f1,
f2, f5, and f6 functions are unimodal functions. f3, f4, f7,
and f8 functions are multimodal functions. Excepting f2,
f6, and f8 function, the optimum value of each function is
0. The optimum value of f2 function is 0 and the corre-
sponding optimum solution is xd = 1. The surface of each
function of N = 2 is shown in Fig. 3. The parameters;
searching range and initializing range are set as shown in
TABLE 1 for each benchmark function. vmax is a diver-
gent control parameter. The upper bound is given at each
particle velocity calculated in Eq. (1). Initializing range is
determined as an asymmetric range in the searching range.
This operation provides the biased initial values.

5. Results

The simulation results of N = 2 are illustrated in Fig.
4. The horizontal axis denotes an iteration, and the vertical
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Table 1: Benchmark Function
Function Search Range Initial Range

Sphere function f1(x) =
N∑

d=1

x2
d (−100, 100) (50, 100)N

Rosenbrock function f2(x) =
N−1∑
d=1

(100(xd+1 − x2
d)2 + (xd − 1)2) (−100, 100) (50, 100)N

Rastrigin function f3(x) = 10N +
N∑

d=1

((xd)2 − 10 cos(2πxd)) (−10, 10) (2.56, 5.12)N

Griewank function f4(x) = 1 +
1

4000

N∑
d=1

x2
d −

N∏
d=1

cos
(

xd√
d

)
(−600, 600) (300, 600)N

Rotated hyper-ellipsoid function f5(x) =
N∑

d=1

 d∑
k=1

xk


2

(−65.536, 65.536) (32.768, 65.546)N

Modified 3rd De Jong’s function (step) f6(x) = 30 +
N∑

d=1

bxdc (−2.048, 2.048) (1.024, 2.048)N

Ackley’s function f7(x) = −20 exp

− 1
5

√√√
1
N

N∑
d=1

x2
d

 − exp

 1
N

N∑
d=1

cos(2πxd)

 + 20 + e (−32.768, 32.768) (16.384, 32.768)N

Michaelwicz’s function f8(x) = −
N∑

d=1

sin(xd) ·
sin

 dx2
d

π

2m

(0, π) (3π/4, π)N

(a) Sphere function (b) Rosebrock function

-10
-5

 0
 5

 10-10
-5

 0
 5

 10

 0
 50

 100
 150
 200
 250

x1

x2

(c) Rastrigin function (d) Griewank function

(e) Rotated hyper-ellipsoid (f) Modified 3rd De Jong’s (g) Ackley’s function (h) Michaelwicz’s function

Figure 3: The surface of benchmark function N = 2

axis denotes the average evaluation value. We carry out 50
times trials. The parameters of PSO are set to w = 0.729
and c1 = c2 = 1.494. However, w use IWA which lin-
early decreases with iteration. The number of particles is
10. Moreover, N of benchmark function was set as 2 and
10. Figure 4 shows that the solution search performance
in which golden angle PSO is equivalent to the conven-
tional PSO is obtained, when the dimension of a evaluation
function is low. Especially, in some benchmark functions,
when there is little iteration, the solution better than the
conventional PSO is obtained. Moreover, in all the bench-
mark functions, the performance of golden angle PSO is
improving rather than deterministic PSO. The simulation
results of N = 10 are illustrated in Fig. 4．As compared
with deterministic PSO, performance improves golden an-
gle PSO with all the benchmark functions like the case of
N = 2. On the other hand, as compared with the con-

ventional PSO, golden angle PSO becomes the searching
performance in which iteration is almost the same to about
100 times. However, in subsequent iterations, an evaluation
value has a difference. This is considered to be influence of
inertia weight approach (IWA).

6. Conclusions

In this article, we proposed a novel parameter setting
procedure which deterministically reproduce the diversity
of the conventional stochastic PSO. The proposed pro-
cedure is based on the effect of the stochastic factor of
the conventional PSO. We confirmed that the determinis-
tic PSO using the proposed procedure exhibits the similar
performance of the conventional PSO by using the golden
angle.
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(a) Sphere
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(b) Rosenbrock
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(c) Rastrigin
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(d) Griewank
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(e) Rotated hyper-ellipsoid

 24

 26

 28

 30

 32

 34

 36

 0  50  100  150  200  250  300

av
er

ag
e 

ev
al

ua
tio

n 
va

lu
e

iteration

Deterministic PSO
GoldenAngle PSO

Standard PSO

(f) Modified 3rd De Jong’s
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Figure 4: Standard PSO vs Deterministic PSO with Golden Angle (N = 2 (a)–(h), N = 10 (i)–(p) )
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