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Abstract—In this paper, we proposed a new method
for estimating evolution of neural network structures only
from multi-spike sequences. In the proposed method, we
used a spike time metric which quantifies distance between
two spike sequences and applied partialization analysis to
the spike time metric. To check the validity of the pro-
posed method, we conducted numerical experiments by us-
ing an evolving neural network model with spike-timing-
dependent plasticity learning. As a result, we could detect
existence of learning in the neural network and estimate
how the neural network structure evolves.

1. Introduction

One of the important issues in neural science is to cap-
ture the neural network structure as well as their nonlinear
dynamics. To solve this issue, one of the natural and es-
sential ways is to observe multi-spike sequences simulta-
neously, to analyze them and to estimate connectivities be-
tween neurons, because these multi-spike sequences reflect
essential information about the neural network structure.

In recent works [1, 2], methods for estimating connec-
tivities between neurons by transforming spike sequences
into continuous time series have been proposed. Although
these methods work well, one should be careful to apply
these methods, because it is possible to lose essential infor-
mation of spike sequences by transforming spike sequences
into continuous time series.

From this point of view, the methods for estimating con-
nectivity between neurons only from spike sequences with-
out transforming spike sequences into continuous time se-
ries have been proposed [3, 4]. We have also proposed an
estimation method of a neural network structure and di-
rection of couplings only from observed multi-spike se-
quences [5, 6] using a spike time metric [8]. In Refs.
[3, 4, 5, 6], static neural network structures are estimated.

However, it is also important to estimate dynamic
structures, or to detect how the neural network structure
changes, because one of the intrinsic properties in neural
networks is learning. When the neural networks accept ex-
ternal stimulation, neural networks change their structure
by learning.

In this paper, we proposed a method for estimating evo-
lution of neural network structures by applying the methods
of estimating static neural network structures [5, 6] to the
case that neural networks dynamically evolve. To check the
validity of the proposed method, we conducted numerical
experiments by using a neural network model with a learn-
ing rule of spike-timing-dependent plasticity [7]. In the
experiments, we first observed the multi-spike sequences
from the neural network with the STDP learning [7]. Next,
we divided the observed multi-spike sequences into small
temporal epochs. Then, we applied the methods in Refs.
[5, 6] to the temporally divided multi-spike sequences and
estimated their connectivities. As a result, we could esti-
mate the evolving neural network structure with high esti-
mation accuracy.

2. Method

2.1. Spike time metric

We used a spike time metric [8] to quantify distance be-
tween two spike sequences. The spike time metric consists
of two operations. The first one is deletion or insertion of a
single spike. The cost of this operation is unity. The second
operation is movement of a single spike. The cost of this
operation isq∆t whereq is a parameter and∆t is an interval
which a single spike is moved.

Let us assume that theith spike sequence is described as

Xi(t) =
mi
∑

k=1

δ(t − tk
i ), (1)

wheretk
i is thekth spike timing andt1i < t2i < . . . < tmi

i .
Then, the distance between two spike sequencesXi(t) and
X j(t) is defined as

D(Xi(t), X j(t)) = min{
N−1
∑

k=1

c(Vk,Vk+1)}, (2)

whereV1 = Xi(t), VN = X j(t), V1,V2, . . . ,VN are elemen-
tary steps that transformXi(t) into X j(t), andc(Vk,Vk+1) is
the cost of an elementary step that transformsVk into Vk+1.
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Then, the distance between the two spike sequences is de-
fined as the minimum total cost of the elementary steps to
transformXi(t) into X j(t). Figure 1 shows an example of
transformingX1(t) into X2(t) by the spike time metric.

V1 = X1

V2

V3

V4

V5

V6

V7

V8 = X2

deletion

insertion

insertion

Figure 1: An example of transformingX1(t) into X2(t) by
the spike time metric.

2.2. Spike time metric coefficient and partialization
analysis

To estimate connectivity of neurons only from spike se-
quences, we have already proposed a spike time metric co-
efficient (STMC) and a partial spike time metric coefficient
(PSTMC) [5]. The STMC is defined as

S i j = 1−
D(Xi(t), X j(t))

max
k,l

D(Xk(t), Xl(t))
. (3)

If two spike sequences are similar, the STMC is close to
unity. Otherwise, the STMC is close to zero. Then, the
STMC is a similar measure to the correlation coefficient.
However, the STMC could be spuriously biased if two neu-
rons are driven by common inputs from other neurons.

To remove such spurious correlation, we applied partial-
ization analysis to the STMC. Then, the PSTMC is defined
as

Pi j =

∣

∣

∣

∣

∣

∣

α(i, j)
√

α(i, i)α( j, j)

∣

∣

∣

∣

∣

∣

, (4)

whereα(i, j) is the (i, j)th element in an inverse matrix of
S = (S i j). The PSTMC can measure the degree of corre-
lation between the spike sequences without any spurious
correlation.

2.3. Directional spike time metric

To estimate the direction of couplings between neurons,
we defined a directional spike time metric [6]. We calcu-
lated the spike time metric between two spike sequences
Xi(t) andX j(t + τ) defined as

Di j(τ) = D(Xi(t), X j(t + τ)), (5)

where τ is a temporal difference between two spike se-
quencesXi and X j. We distinguish the direction of cou-
plings by whether the differenceτ at the minimum value of
Di j(τ) is positive or not. If the differenceτ at the minimum
value ofDi j(τ) is positive, we judged that the direction of
coupling is from theith neuron to thejth neuron.

2.4. How to decide parameter q in spike time metric

To apply the proposed measures to the spike sequences,
it is important to decide the parameterq in the spike
time metric appropriately, because it determines a relative
weight between the two operations in the spike time metric:
deletion and insertion or the movement. We experimentally
decidedq only with the observed asynchronous spike se-
quences in the following manner. First, let us assume that
we have two spike sequencesV andV ′ that are identical
except for a single spike that occurs atti

V in V and t j
V ′ in

V ′ under the condition thatti
V < t j

V ′ . To transformV into
V ′, we have two possible operations. The first operation
is the insertion and deletion. Its cost is two (each cost is
unity). The second operation is the movement. Its cost is
q(t j

V ′ − ti
V ). Then, if we solve the equation 2= q(t j

V ′ − ti
V )

(in the case that both costs are same), we obtain a critical
value ofq (if 2 > q(t j

V ′ − ti
V ), the movement is selected, oth-

erwise the insertion and deletion are selected). To decide
q appropriately, we have to define a possible range for the
movement of a single spike,t j

V ′ − ti
V , because it decides the

critical values ofq. Then, we evaluated an average mini-
mum time difference by

∆T =
1

n(n − 1)

n
∑

i=1

n
∑

j=1,i, j

∆T i j, (6)

where

∆T i j =
1
Ni

Ni
∑

k=1

min
l

(tk
i − tl

j), (0 < tk
i − tl

j <
IS I
2

), (7)

Ni is the number of spikes in theith sequence,n is the num-
ber of spike sequences,tk

i is thekth spike timing in theith
spike sequence, andIS I is the mean interspike interval for
all the multi-spike sequences. To exclude long time differ-
ence, we applied the condition thattk

i − tl
j <

IS I
2 .

To obtain the critical value ofq, we solve the equation
2 = q∆T . Although this determination procedure is heuris-
tic, we have confirmed that it works well in other cases.
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3. Simulations and Results

To evaluate the validity of our method, we used a neural
network constructed from a mathematical model of Izhike-
vich’s simple neuron model [9] and generated multi-spike
sequences. The dynamics of theith neuron is described by
the following equations:

dvi(t)
dt

= 0.04v2
i (t) + 5vi(t) + 140− ui(t) + Ii(t),

dui(t)
dt

= a(bvi(t) − ui(t)),

if vi(t) ≥ 30 [mV], then

{

vi(t)← c,
ui(t)← ui(t) + d,

(8)

wherevi(t) is the membrane potential,ui(t) is the mem-
brane recovery variable; anda, b, c, and d are dimen-
sionless parameters. The parameters are set toa = 0.02,
b = 0.2, c = −65, andd = 8. If vi(t) ≥ 30[mV], vi andui

are reset according to Eq. (8). The variableIi(t) is the sum
of the external and synaptic inputs from coupled neurons
which is defined as follows:

Ii(t) =
n
∑

j=1

m j
∑

k=1

gi jwi jδ(t − tk
j − τi j) + 5ηi(t) (9)

wheregi j is a coupling strength fromj to i, τi j is a delay
time betweeni and j which is randomly set to a value be-
tween 1 [ms] to 4 [ms], andwi j is the (i, j)th element of the
connection matrix of the network structure. If the neurons
are coupled fromj to i, wi j takes unity. Otherwise,wi j takes
zero. The amplitude of the external inputs is set to 5 times
ηi(t), whereηi(t) is a Gaussian random number with a mean
value and standard deviation of zero and unity, respectively.
The number of neurons is 100. The neural network is com-
posed of only excitatory neurons which are regular spiking
neurons. Each neuron connects to 10 postsynaptic neurons.

We use an STDP function proposed by Song et al. [7]
which is defined by

∆g =

{

Ape−|∆t|/τp if ∆t > 0,
−Ade−|∆t|/τd otherwise,

(10)

whereAp andAd are the learning rates of the long-term po-
tentiation (LTP) and depression (LTD), andτp andτd are
the time constants that determine the exponential decays of
the LTP and the LTD. We set the parametersAp = 0.01,
Ad = 0.012, andτp = τd = 20 [ms]. In Eq. (10), the vari-
able∆t represents a relative spike timing between a presy-
naptic and a postsynaptic neuron. The coupling strength
is updated asg ← g + ∆g at every second. The coupling
strength is limited between 0 to 10. At an initial condition,
we set that the coupling strength is 7 and an initial network
structure is a random network.

We conducted numerical experiments in the following
way. First, we generated multi-spike sequences by con-
structing a neural network using Izhikevich’s simple neu-
ron model and the STDP rule of Eq. (10). Next, we cal-
culated the PSTMC between spike sequences for 1,000 [s].

Then, we divided this total temporal length of 1,000 [s] into
small temporal windows. The length of the small tempo-
ral window is 100 [s]. Using multi-spike sequences in this
100 [s] small windows, we applied the methods of Refs
[5, 6]. We classified coupled pairs and uncoupled pairs by
the Otsu thresholding [10]. Then, we estimated the direc-
tion of couplings by calculatingDi j(τ) for the estimated
coupled pairs. Finally, we evaluated the estimation accu-
racy.

To confirm the estimation accuracy, we compared the es-
timated network with the original network. We used the
following two characteristics defined by

C−C̃ =

∑

i, j

(wi jw̃i j)

∑

i, j

wi j

, (11)

U−Ũ =

∑

i, j

(1− wi j)(1− w̃i j)

∑

i, j

(1− wi j)
, (12)

wherewi j (w̃i j) is the (i, j)th element of the adjacency ma-
trix of the original (estimated) network structure. If the
neurons are coupled fromj to i, wi j and w̃i j take unity.
Otherwise,wi j andw̃i j take zero. C−C̃ indicates a ratio that
coupled pairs are estimated as the coupled correctly, and
U−Ũ indicates a ratio that uncoupled pairs are estimated as
the uncoupled correctly. If both of C−C̃ and U−Ũ are close
to unity, it means that the estimation accuracy is high. In
the experiments, we defined the original network structure
in the following way: if the coupling strength is larger than
7, we regarded the pairs of neurons as coupled pairs. Oth-
erwise, we regard the pairs of neurons as uncoupled pairs.

Figure 2 shows results of histograms of coupling
strength. From these results, we can see that the distribu-
tion of the coupling strength changes, namely, the network
structure evolves. We also show results of estimation ac-
curacy of the evolving neural network structures in Fig. 3.
From the results, the estimation accuracy C−C̃ takes rel-
atively a low value at 0 [s]. This reason is that the cou-
pling strength changes rapidly at the initial stage with the
STDP. Namely, it is relatively hard to estimate the struc-
ture because the evolution of the network structure has fast
dynamics. However, the value of both of U−Ũ takes rel-
atively a high value. The temporal epoch proceeds, the
estimation accuracy converges to higher values. It means
that the proposed method can detect the evolution of STDP
neural network structures.

4. Conclusions

In this paper, we estimated the evolving neural net-
work structure through the spike-timing-dependent plas-
ticity (STDP) by extending the estimation method for net-
work structures. In the proposed method, we used the spike
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Figure 2: Histograms of coupling strength at each time.

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 0  200  400  600  800  1000

C
-C~

, U
-U~

time [s]

C-C
~

U-U
~

Figure 3: Estimation accuracy of the evolving neural network structures. Red line shows C−C̃ and blue line shows U−Ũ.
Error bars indicate minimum and maximum values with 20 trials are also provided.

time metric to quantify the distance between two spike se-
quences and applied the partialization analysis to the spike
time metric to detect couplings between neurons from spike
sequences. As a result, the proposed method can estimate
the evolving neural network structures and the direction of
couplings with high estimation accuracy.
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