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Abstract—We investigated generation mechanism of
various wave pattern such as the propagating wave and the
switching solutions in a ring of several number of cou-
pled hard-type oscillator systems in our previous papers.
We clarified for a ring of six coupled oscillators by us-
ing bifurcation theory that birth and death of the propa-
gating wave and the switching solutions were due to pitch-
fork and heteroclinic bifurcations. The propagating wave
has very unique characteristic such as non-decaying prop-
agation. The switching solution shows interesting property
such as pitchfork bifurcation of the quasi-periodic solution.
As a first step toward hardware implementation, we per-
form realistic computer simulation by using LTspice soft-
ware. As a result, we have succeeded to obtain these solu-
tions in a realistic ring of six coupled hard-type oscillator
systems.

1. Introduction

Recently, researches on coupled oscillator systems be-
come very popular in relation to self-organization systems
such as neural networks, central pattern generator, etc. [1]
[2] [3] [4]. We investigated various oscillation modes in a
ring of coupled oscillators via averaging method in 70s [5]
and found various modes of oscillation. They include the
same and the reverse phase oscillations, the double mode
oscillations, and the rotating wave oscillations, etc. How-
ever, the results based on averaging method are limited to
weakly nonlinear case, and therefore, comparatively sim-
ple oscillation patterns can appear. Recently, we investigate
the ring of six coupled hard-type (bistable) oscillators with
medium strength nonlinearity and found more complex os-
cillation patterns such as the propagating quasi-periodic
wave and the switching quasi-periodic solutions in addition
to those already found for the weakly nonlinear case [6] [7]
[8]. The switching solution is very important as an exam-
ple of bifurcation of the quasi-periodic solutions which has
not been investigated before. Moreover, the propagating
wave solution, in which the oscillating part propagates the
transmission line with no decay, seems to have an engi-
neering application as an information carrier. From these
points of view, we aim at hardware implementation of the
ring of coupled hard-type oscillator systems to realize the
above interesting oscillation patterns. In this paper, as a

first step of hardware implementation, we perform SPICE
simulation of the system. As a result, we are succeeded in
obtaining various oscillation patterns including the propa-
gating wave and the switching solutions. In this paper, we
focus our attention to realize the propagating wave and the
switching solutions in a ring of six coupled oscillators by
LTspice simulator.

2. LTspice Simulation

At first, we will design the circuit model of a ring of
six coupled hard-type oscillators shown in Fig. 1 by us-
ing LTspice simulator. Here each oscillator consists of a

Figure 1: A ring of six coupled hard-type oscillators. L0 is
a coupling inductor.

parallel connection of an inductor L, a capacitor C and
a nonlinear conductor NC as shown in Fig. 2. The im-
portant point is how to implement NC by using practical
circuit elements. Fig. 3 is our circuit realization of NC
whose V-I characteristic is given in Fig. 4. The posi-
tive slope around the origin is adjusted by using Rg. The
negative slope in the middle voltage region is fixed by R2.
The positive slope in the large voltage region is fixed by
Rr. A pair of diodes surrounded by dotted square Da de-
termines the voltage Va. Also that surrounded by dotted
square Db determines the voltage Vb in Fig. 4. We ap-
ply 9th-power polynomial approximation to this V-I curve
such as iNC = g1v − g3v3 + g5v5 − g7v7 + g9v9, where
g1 = 0.000907, g3 = 0.00422, g5 = 0.00528, g7 = 0.00257,
and g9 = 0.000441. In our theoretical model we assume
NC by fifth-power polynomial: iNC = g1v − g3v3 + g5v5,

- 14 -

2013 International Symposium on Nonlinear Theory and its Applications
NOLTA2013, Santa Fe, USA, September 8-11, 2013



N
C

v
NCi

CL

Figure 2: Circuit model of a hard-type oscillator. L = 1mH,
and C = 500pF. NC is a nonlinear conductor shown after.
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Figure 3: Circuit of a nonlinear conductor. Parameters are
as follows. Vr = 35V, Vop=10V, Rr = 500Ω, Rg = 1kΩ,
and R2 = 5kΩ.

but in actual circuit we need up to 9th power. In spite of
the difference of NC between our theoretical and practical
models, we can obtain almost the same phenomena. This
means that most important terms to realize the propagat-
ing wave and the switching solutions are only g1, g3 and
g5, and higher order terms do not affect the qualitative na-
ture of the circuit. Namely, we believe that most important
nature of the V-I characteristic of NC to realize oscillation
patterns obtained from the theoretical model is the follow-
ing three points: 1) positive slope around the origin; 2) neg-
ative slope in the medium voltage region; 3) positive slope
in the large voltage region.
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Figure 4: V-I characteristic of a nonlinear conductor.

3. Initial Conditions to Realize the Propagating Wave
and the Switching Solutions

To give initial condition to each oscillator, we add a cur-
rent source i0k for k = 1, 2, 3, 4, 5, 6 in parallel to each os-
cillation circuit as shown in Fig. 5. By adjusting the initial
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Figure 5: The current source connected in parallel to each
oscillator for giving the initial condition.

current sources we can obtain various patterns of oscilla-
tions. Since the period of each oscillator T = 2π

√
LC =

4.44µsec where L = 1 mH and C = 500 pF, we fix the
length of initial pulse is about 1µsec ≃ T/4 from our expe-
rience. The coupling inductor L0 is fixed as 2.2 mH, which
results in the coupling factor α = L

L+L0
= 0.312 in our the-

oritical model 1 [7].
At first, we will demonstrate the propagating quasi-

periodic wave solution in the following manner. Fig. 5
shows a pattern of initial current sources for oscillator 1
(k = 1) and oscillator 2 (k = 2) for obtaining the counter-
clockwise rotating propagating wave shown in Fig. 7. The
magnitude of current pulse is slightly beyond the thresh-
old value of each isolated oscillator. In this case the initial
current sources for oscillators 3 to 6 (k = 3 to 6) are zero.
By interchanging the initial current pulses for k = 1 and
2 in Fig. 6, we can obtain the clockwise rotating propa-
gating wave as shown in Fig. 8. By observing the pulse

1As stated before, the NC used in this LTspice simulation is not the
fifth-power nonlinearity used in the theoritical model. Therefore, this
value of α is only for reference.
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Figure 6: The initial pulse waveforms for oscillator 1 (up-
per trace) and 2 (lower trace) for the counterclockwise ro-
tating propagating wave. Those for oscillators 3 to 6 are
zero.
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Figure 7: The counterclockwise rotating propagating wave
in a ring of six coupled system.

waveforms in Figs. 7 and 8 we notice that pulse waves can
rotate either counterclockwise or clockwise. By giving the
same initial current sources as those in Fig. 6, we may ob-
tain the rotating propagating wave solutions for the ring of
arbitrary number of coupled hard-type oscillators. Fig. 9
demonstrates an example of the counterclockwise rotating
propagating wave for a ring of ten coupled oscillators.

Next we will demonstrate the switching quasi-periodic
solution. Fig. 10 presents the initial current pattern for os-
cillator 1 and oscillator 2. Namely, to realize the switching
solution, we give both positive and negative current pulses
with 1 µsec length simultaneously for oscillator 1 and 2, re-
spectively whose magnitude is slightly beyond the thresh-
old value (1 mA). The initial current for the rest oscillators
are zero. Fig. 11 presents the switching solution in which
two pairs of (v1, v2) and (v4, v5), synchronized with reverse
phase, repeat oscillation and no oscillation periods alterna-
tively.

At last, we will show the isolated oscillation pattern ob-
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Figure 8: The clockwise rotating propagating wave in a
ring of six coupled system.
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Figure 9: The counterclockwise rotating propagating wave
in a ring of ten coupled system.

served for large L0 = 5 mH (α = 0.167) in Fig. 12. Other
parameters are the same as before. In this case, we give
an initial current pulse whose magnitude and length are 1
mA and 1 µsec, respectively for oscillator 1 only. After all,
by giving appropriate initial current pulse for each oscilla-
tor we can realize all kinds of oscillation patterns predicted
theoretically [5] [7].

4. Conclusion

We perform LTspice simulation of a ring of six coupled
hard-type oscillators to confirm actual realization of vari-
ous oscillation patterns predicted by our theoretical analy-
sis [7]. We show by giving an appropriate initial current
source to each oscillator, we can realize various modes of
oscillations. The important point is the realization of the
nonlinear conductance. Namely, we do not intend to realize
the fifth-power nonlinear conductance used in our theoret-
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Figure 10: The initial pulse patterns for the switching solu-
tion. Those for oscillators 3 to 6 are zero.

 0  50  100  150  200

-4
-2
 0
 2
 4

-4
-2
 0
 2
 4

-4
-2
 0
 2
 4

-4
-2
 0
 2
 4

-4
-2
 0
 2
 4

-4
-2
 0
 2
 4

time [µ sec.]

v1

v2

v3

v4

v5

v6

 [V]

Figure 11: The switching quasi-periodic solution.

ical analysis but we try to implement more “natural” non-
linear conductance as a hardware. In spite of the difference
of nonlinearity we confirm most important oscillation pat-
terns; namely, the propagating wave and the switching so-
lutions. From this result, we conjecture that most of oscilla-
tion patterns predicted by theory assuming the fifth-power
nonlinearity can be observed for more “general” nonlinear-
ity cases showing bistable oscillation.
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