
Abstract: We proposed a compact pulse compression
scheme, which consists of a linear grating and a nonlin-
ear grating, to effectively compress both hyperbolic se-
cant and Gaussian shaped pulse profiles.
1. Introduction
Recently, we reported that pedestal-free compression of
optical pulse is possible using a nonlinear fiber Bragg
grating (NFBG) with exponentially decreasing disper-
sion profile. The input pulse however must have a hy-
perbolic secant pulse shape and a quadratic chirp [1].  In 
general, it is not easy to produce the precise pulse shape
and chirp [2]. In this paper, we study the compression of
initially chirp-free pulse using a linear chirped fiber
Bragg grating (CFBG) to produce the required chirp
profile for the compression in a NFBG with exponen-
tially decreasing dispersion. In particular, we assume
that the input pulse is a chirp-free Gaussian pulse or hy-
perbolic secant pulse. Our simulation results show that
the pedestal generated from an input Gaussian pulse is
much small than that of an input hyperbolic secant pulse
showing that the compression by the NFBG is more sen-
sitive to the chirp profile than the pulse shape. We also 
found that the initial Gaussian profile evolves into a hy-
perbolic secant profile after the compression in the
NFBG.
2. Self-similar pulse compression
Self-similar pulse compression near photonic bandgap of
gratings has been described in [1], where the pulse width
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decreases, the time-bandwidth product tends to 0.315
(transform-limited hyperbolic secant pulse). Fig. 1
shows the variation of the time-bandwidth product from
0.761 to 0.327.
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3. Pre-chirp 
First, we launched a chirp free hyperbolic secant pulse
(sech(T/T0), T0 = 10 ps) into the linear CFBG which is 4
cm long with normal dispersion  = 10 ps2/cm.
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Normal dispersive medium is used here to introduce
negative required for the nonlinear pulse compres-
sion later. Fig. 2 shows the pulse profile before and after 
the linear CFBG in linear and logarithmic scale.  From
Fig. 2(d), the chirped pulse retains its hyperbolic secant
pulse profile. Fig. 3 shows a polynomial fit of the phase
of the pulse after linear grating CFBG.  The coefficients
of the t4, t2 and t0 terms are 0.0111, 0.18555 and 0.168
respectively where t = T/To .

Fig.2. Pulse profile of the initial ((a) and (b)) and chirped 
pulse ((c) & (d)) in both linear ((a) and (c)) and logarith-
mic scale ((b) and (d)).

Fig.3. The phase profile after the linear CFBG.

We then launched a chirp-free Gaussian pulse
(exp( T2/T0

2/2), T0 = 10 ps) into linear grating. It is well
known that the pulse after the linear CFBG is still Gaus-
sian pulse with quadratic chirp. The chirp parameter
is chosen to be negative,
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We choose a  4 cm long linear grating with constant
dispersion ps2/cm here for demonstrationFig.1. Evolution of time-bandwidth product. .
4. Nonlinear compression
First, we launched the chirped pulse in Fig. 2 into the
NFBG. Based on the polynomial fitting result in Fig. 3,
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is set to z2. We set T0
2/| g/P0

and choose = 40ps2/cm for illustration. Fig. 4 
shows the pulse profile after the NFBG in both linear
and logarithmic scales.  The fitted hyperbolic profile
(dashed lines) is of the same peak power and FWHM as
final compressed pulse. We found that the pedestal en-
ergy of the final compressed pulse is 5.44% [3]. Poly-
nomial fitting of the phase of the pulse after nonlinear
grating gives the coefficients of the t4, t2 and t0 terms to
be 0.0041, 0.0033 and 0.5661 respectively.  Compared
to the results in Fig. 3, the coefficients of t4 and t2 are 
greatly reduced, i.e. the final compressed pulse is close
to chirp-free. Fig. 5 shows the evolution of the FWHM
of an initial hyperbolic secant pulse in the linear CFBG 
and the NFBG. The final FWHM compression factor
(compared to initial chirp-free pulse) is 7.23. 

Next we launched the chirped Gaussian pulse into the
NFBG.  Following [4] we choose the parameters

2
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where T(4cm) and P(4 cm) are the pulse width and peak
power of the pulse after linear CFBG, and  is the ini-
tial dispersion value of NFBG. In our example, 25
ps2/cm, T(4cm) = 10 2 ps, and the NFBG is 16 cm long.
Fig. 6 shows the pulse profile after the linear CFBG and
after the CFBG in linear and logarithmic scales.  From
Fig. 6 (d), the main portion of the compressed pulse is
almost the same as the fitted hyperbolic pulse. We found
that the pedestal energy of the final compressed pulse is 
only 0.0935%. Polynomial fitting for the phase of the
final compressed pulse gives the coefficients of the t4, t2

and t0 terms to be 0.0007, 0.0487, 0.9355, respec-
tively indicating that the pulse is close to transform-
limited. Fig. 7 shows the evolution of the FWHM in the
linear CFBG and the NFBG. The final FWHM com-
pression factor (compared to the FWHM of initial chirp
free Gaussian pulse) is 6.3.

Fig.6. For a initially Gaussian pulse, the pulse profile before
(solid lines) and after the linear CFBG (dashed lines) in linear 
scale (a) and logarithmic (b) scales). The pulse profile after the
NFBG (solid lines) and the “fitted” hyperbolic secant profile (dots 
and dashed lines) in linear (c) and logarithmic (d) scales.

Fig.4. The final compressed pulse profile (solid lines) and 
the “fitted” hyperbolic secant profile (dots and dashed
lines) in linear and logarithmic scales.

5. Conclusions
 Fig.7. Evolution of the FWHM in the linear CFBG and NFBG. 

We have numerically demonstrated nearly chirp-free and
pedestal-free optical pulse compression using a linearly
chirped fiber Bragg grating and a nonlinear fiber Bragg
grating with exponentially decreasing dispersion. A 
compact pulse compression schemes using fiber Bragg
gratings is feasible.

Fig.5. Evolution of the FWHM in the linear CFBG and NFBG.
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