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Abstract 
We proposed an algorithm to derive the minimum 
number of fiber links required for resource optimization 
in consolidating two coexisting networks provided that 
every two nodes in the two networks are bi-directionally 
connected.

1 Introduction 
With the advancement of optical fiber technologies 

and the surge demand of internet bandwidth in the last 
decade, there are many optical networks deployed by 
different parties. They maybe overlapped extensively in 
one region. It is also envisaged that more fiber links can 
be saved when transmission links at high data rate (e.g. 
40Gb/s or 100Gb/s link) [1] are employed. In the 
consolidation of two networks to achieve high utilization 
of network resources, by traffic grooming and rerouting, 
some of the links can be suspended. Though for the 
suspended links, the deployed fibers can not be 
reallocated, the operation cost of the regenerator site can 
be saved [2]. For instance, if there are two identical and 
colocated optical ring networks with d nodes and links 
each, there are totally 4d links considering bi-directional 
communication. It can be shown that the required 
number of links can be reduced from 4d to d by inserting 
two short interconnections between all the colocated 
nodes of the two ring networks, thus substantially reduce 
the link cost by a factor of 4. Based on this, we propose 
an algorithm to derive the minimum number of links 
required for arbitrary connected networks. Only 
networks that can be viewed as planar graphs are 
considered. A simple equation for the minimum number 
of links required is derived for certain networks, whereas 
for others that do not have an exact solution, an upper 
bound is given. 

2 Problem formulation and the algorithm 
We model the existing optical network as a 

connected planar graph and make the following 
assumptions:  
i. There are two identical optical networks in one region. 
ii. The cost of every link between two nodes is identical. 
iii. The interconnections between two networks only 
occur at colocated nodes and cost much less than that of 
a single link, thus their cost is negligible. 
The objective is to derive the minimum number of links 
required so that there is a path from an arbitrary node to 
all other nodes in the two networks in which all of the 
links are directed. Assume that all colocated nodes will 
be interconnected with interconnections. Thus all traffic 

to and from the nodes on the second network will go 
through the colocation interconnection and the original 
links on the second network can be saved. 
In graph theory, bridge is an edge (link) whose removal 
disconnects a graph [3]. We divide the bridges into two 
types, namely TP-I bridge and TP-II bridge. A leaf is a 
vertex of degree 1. TP-I bridge is the link incident to a 
leaf. The other bridges are TP-II bridges. An articulation 
point (cut vertex) is a vertex whose removal disconnects 
the graph. The following states our notations. 
Lmin – Minimum number of links required.
B – Number of bridges in a graph. 
Ai – Number of the articulation points with the removal 

of which the graph will be divided into i subgraphs.  
The following states our algorithm. As the two coexisting 
networks are identical, we concentrate on only one of the 
networks. 
Step 1, remove all the TP-I bridges and the leaves 
connect to them.  
Then some of the TP-II bridges will become TP-I bridges. 
Remove them as stated in step 1 until no TP-I bridges 
exist.  
Step 2, remove all the TP-II bridges. Denote V as the 
number of vertices remained after this step. 
Step 3, remove all the articulation points. 
Thus the graph is divided into several subgraphs.  
Step 4, restore the articulation points to all the 
subgraphs. 
Step 5, check whether the resultant subgraphs are 
Hamiltonian [4] or not. A Hamiltonian cycle is a cycle 
that visits each node exactly once. If all the resultant 
subgraphs are Hamiltonian, we can derive that: 

min
2

2 i
i

L B V A i( 1)                 (1) 

Proof: It is obvious that every bridge needs two links 
with opposite directions in order that the two end nodes 
of the bridge can reach each other. For a single 
articulation point that will divide a graph into i subgraphs, 
the total vertices after step 4 should be V + (i-1). As the 
resultant subgraphs are Hamiltonian, the number of links 
required is equal to the number of vertices. 
If there are some subgraphs that are not Hamiltonian, we 
concentrate on the non-Hamiltonian graphs and make the 
following definitions. 
D2 node: Nodes of degree two. 
Arm: A path consists of entirely D2 nodes and the 

connecting links plus the two end links 
connecting to the adjacent non-D2 nodes. 

j-D2 arm: Arms with j D2 nodes. 
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For example, in Figure 1, there is one 3-D2 arm and two 
2-D2 arms in the non-Hamiltonian graph. We denote Ni
as node i and li-j as the link connecting node i and j. One 
of the two 2-D2 arms consists of l1-2, N2, l2-3, N3 and l3-4.
Then we go to step 6. 

Figure 1. A non-Hamiltonian graph with three arms.  
Step 6, find all the arms first, then remove those arms 
one at a time until all the subgraphs are Hamiltonian.  
Denote Mj as the number of j-D2 arms deleted, and VH as 
the number of remaining vertices in the resultant 
Hamiltonian graphs. We come to the following equation: 

min

1 2

2 ( 1)H j i
j i

L B V M j A i( 1)

)

)

    (2) 

Proof: All the j+1 links of the j-D2 arms are required in 
order that all the D2 nodes in the arm can reach other 
nodes and be reachable from other nodes. So we need at 
least  links. On the other hand, if an arm 

with the end nodes, N
1

( 1)H j
j

V M j

e1 and Ne2 (they can be same nodes)
is added between two nodes, Nm and Nn, of a Hamilton 
cycle, all the D2 nodes in the arm can reach Nm and thus 
all other nodes via the link Ne1 to Nm. And also, all the 
D2 nodes in the arm can be reached by other nodes via 
the link Nn to Ne2.  As for the graph in Figure 1, when 
we view the arm consists of l1-2, N2, l2-3, N3 and l3-4 as is 
added to the Hamiltonian cycle consists of nodes N1, N7,
N8, N9, N4, N5 and N6. Ne1 and Ne2, Nm and Nn, are N2 and 
N3, N1 and N4 respectively. Further additions of arms 
have similar properties as they are not added to the 
previously added arms. So  links are 

sufficient for all the nodes to be fully connected. Thus, 
we need exactly  links plus the parts 

denoted by the number of bridges and articulation points, 
the 1

1
( 1)H j

j
V M j

1
( 1H j

j
V M j

st and the 3rd term in Eq. (2).  
For those networks that are still non-Hamiltonian after 
step 6, it can be proved that the upper bound of Lmin is: 

min
2

2 2 ( 1i
i

L B V A i            (3) 

3 Example illustration 
We illustrate the algorithm using examples of 

various network topologies. 
i) Ring. For two coexisting identical ring optical 
networks, there are no bridges and no articulation points, 
and both of them are Hamiltonian. So the minimum 
number of links required Lmin is equal to the number of 
nodes V. Thus we can reduce the number of links from 
4V to V, so 75% of the links are reduced. If there are 

additional links in the ring networks (For example, two 
identical mesh networks), a reduction of more than 75% 
can be achieved. 
ii) Tree. For two identical tree networks in which all 
links are bridges, Lmin is equal to twice the number of the 
links of one network, namely 2B. Thus 50% of the links 
are reduced. It means no link can be saved in network 1, 
representing the minimum saving that can be achieved. 
iii) For two coexisting identical networks that have 
arbitrary topology as illustrated in Figure 2, we will 
derive Lmin according to the algorithm discussed in the 
previous section.  

Figure 2. Two coexisting identical networks with 
interconnections between all the colocated nodes.  

For step 1, we delete N6 and l4-6, N20 and l19-20, N18 and 
l17-18 (TP-I bridges). Then delete also N19 and l17-19. For 
step 2, we delete l5-7 (TP-II bridge) and B=5, V=16. After 
step 4, we derive five subgraphs, namely the subgraphs 
consist of nodes 1-2-3-4-5, 7-8-9-10-11, 11-12-13, 
11-14-15, and 15-16-17 and A2=1 (N15), A3=1 (N11). All 
of the subgraphs are Hamiltonian except the first one. We 
continue to step 6, delete the arm consists of N2, l1-2 and 
l2-5. Thus all of the subgraphs are Hamiltonian and, M1=1,
VH =15. So the minimum number of links required is: 

min
2

2 ( 1) ( 1)H j i
i

L B V M j A i 30

Thus 72.2% of the links are reduced considering two 
networks. One possible result after link reduction is 
illustrated in Figure 2 as indicated by the 30 arrows. 

4 Summary 
We investigated the minimum number of links 

required in consolidating two duplicated networks to 
make every two nodes bi-directionally connected. We 
proposed an algorithm to derive the minimum number of 
links and found that it is at least the number of the nodes 
or at least twice the number of the bridges in one of the 
networks. The algorithm can be extended easily for the 
consolidation of two non-identical networks. 
This work is supported in part by HK CERG Grant 
CUHK411006. 
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