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Abstract—Electromagnetic (EM) simulators are commonly
used for electromagnetic compatibility and signal integrity (SI)
analysis of printed circuit boards (PCB). The accuracy of such
analysis depends on the models used for PCB dielectrics and
conductors. These models should be broadband and preserve
the physical properties of the materials, such as causality and
passivity. One such model for dielectrics is the Debye model.
Conductors have typically been modeled using a simple surface
impedance formula, which is accurate for smooth conductors
and small skin depth. With the evolution of high-speed designs,
surface roughness loss has also become increasingly important for
signal integrity of PCB interconnects. In this paper, we propose a
Debye-like model for conductors possibly having rough surfaces.
The advantages of a Debye model are its flexibility for arbitrary
variation of surface roughness; guaranteed passivity in SI anal-
ysis; and availability of an equivalent circuit representation.
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I. INTRODUCTION

The complex permittivity of lossy substrates can be ap-
proximated using a Debye model as

ε = ε′
∞

+

N
∑

i=1

ai
s+ bi

, (1)

where ai and bi are physically related to the strength and
time constants of various relaxation processes, and s is the
Laplace variable. The order of the approximation N can be
chosen as high as possible as long as the extracted ai and
bi are all positive coefficients. This ensures that the obtained
model represents a passive network over all frequencies and
therefore satisfies Kramers-Kronig relations for dielectrics. The
Debye model is quite useful in time-domain simulations, as it
allows the consideration of the frequency-dependent material
properties using an RC type of an equivalent-circuit model.

There is no corresponding model for lossy conductors. In
this paper, a generalization of Debye models will be presented
to represent conductors as well. This will ensure a physics-
based RL type of model for conductors with surface-roughness
loss. We propose the following Debye-like model to represent
the surface impedance of conductors:

Zs = Rdc +

N
∑

i=1

sai
s+ bi

, (2)

where Zs is the surface impedance and Rdc is the dc resistance
of the conductor. This Debye model represents the variation of

surface-impedance from dc up to the frequency range defined
by the order of the model.

We present both closed-form solutions and curve-fitting
approaches to calculate the coefficients of the Debye model.
Closed-form solutions are available for dielectrics with a
constant loss tangent and for conductors with smooth surfaces.

II. DEBYE MODEL FOR DIELECTRICS

A. Closed-Form Solution

Commonly used PCB substrates such as FR-4 tend to have
an approximately constant loss tangent in the frequency range
of interest [1], [2]. Hence, an average loss tangent value can be
used to obtain a simple broadband model for such dielectrics.
A constant loss tangent however implies that the dielectric
constant is frequency-dependent according to Kramers-Kronig
relation. Since the complex permittivity is a minimum-phase
function, the dielectric constant can be exactly defined (up to a
constant) for a given frequency-independent loss tangent using
the equation

ε = as−2δ/π, (3)

where a is an arbitrary positive constant, δ is the argument of
tan δ, and s is the Laplace variable [3], [4].

A good overview of methods for network realizations of
nonrational functions such as (3) can be found in [5], [6], [7].
Following the approach in [8], [9], a closed-form Debye model
can be obtained, which results in an RC model for interconnect
capacitance as shown in Fig. 1. The parameters of this model
is available in closed-form as shown in [8].

C

R

C×k
m-1

R×k

C×(k
m-1
)
2

R×k
2

C0

Fig. 1. Debye model representing a lossy dielectric.
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B. RC Vector Fitting

For arbitrary variation of the loss tangent, each individual
element in the RC equivalent circuit model in Fig. 1 needs
to be adjusted. This is equivalent to fitting a rational function
in the form of a Debye model in (1). This can be achieved
by the vector-fitting algorithm [10], which however does not
guarantee positive RC elements. One approach for enforcing
the constraint of positive elements is using heuristic optimiza-
tion methods such as genetic algorithms [11]. Recently, an
RC vector fitting approach has been developed, which easily
enforces this constraint [12]. In [12], the RC vector fitting
approach has been used to fit measured data as shown in Fig. 2.
The frequency-dependent behavior of the complex permittivity
is well captured. Note that the measured data may contain
measurement errors, hence an excellent match between the
measurement and the Debye model is not expected. Rather,
the Debye model may provide additional confidence in the
extracted data, as the Debye model represents a physically
plausible permittivity variation with frequency.
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Fig. 2. (a) Dielectric constant; (b) loss tangent fitted to measured data using
RC vector fitting

III. DEBYE MODEL FOR CONDUCTORS

A. Closed-Form Solutions

Efficient RL realizations for skin effect have been reported
in [4], [13], [14], [15], [16], [17]. These approaches are
adequate when the skin-effect resistance varies with

√
f , which

is accurate for conductors with a smooth surface. In this case,
the surface impedance is given as

Zs =
√

µ/σs1/2 (4)

This impedance function has exactly the same form as the
lossy dielectric admittance in (3). We can therefore create an
equivalent circuit model using a similar approach as in [8]. The
main difference is that the exponent of the complex frequency
s is always fixed as 1/2 for the surface impedance.
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Fig. 3. Debye model representing a lossy conductor. Rdc: dc surface resis-
tance; k: spacing factor; ω0: on-set frequency for skin effect; R = Rdc(k−1);
L = R/ω0 .

The resulting RL equivalent circuit model is shown in Fig.
3. This RL model requires the following four parameters:

• Rdc: dc surface resistance

• ω0: on-set frequency for skin effect

• k: Spacing factor to be chosen based on the required
accuracy vs. bandwidth of the model

• N : Number of RL branches

Based on this input, the values of the circuit elements in
Figure 3 can be obtained analytically following [9] as

R = Rdc(k − 1) (5)

L = R/ω0 (6)

As the number of RL branches N in this network is
increased, the bandwidth of the model is increased as shown
in Figure 4. Note that the dc internal inductance may also
change with the number of branches. This is usually not
critical, since the external inductance is much larger than the
internal inductance. As more and more branches are added
to the model, the dc internal inductance would approach to
an asymptotical value. The on-set frequency of the model can
also easily be adjusted as shown in Figure 5.

Finally, the bandwidth can be adjusted with the spacing
parameter k. Using a larger k increases the bandwidth, but
introduces oscillations as shown in Figure 6. The on-set
frequency was also adjusted to align the two plots in this figure.
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Fig. 4. RL model for ω0 = 2π × 107 rad/s, Rdc = 1Ω.
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Fig. 5. Variation of the on-set frequency. RL model for N = 2, Rdc = 1Ω.
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Fig. 6. Variation of the spacing parameter k. RL model for N = 5, Rdc =
1Ω.

B. RL Vector Fitting

For practical PCB interconnects, the surface impedance
may deviate from the analytical model in (4). For example,
surface roughness loss results in impedance increasing faster
than

√
f . For such arbitrary variations, an RL macromodel

for impedance is necessary. This can be achieved by suitably
modifying the RC vector fitting algorithm in [12].

In the presence of surface roughness loss, the real part Rs

of the surface impedance can be modified as

Rs = κ
√

πfµ/σ (7)

where κ is the surface roughness loss correction factor. A
commonly used approximation for κ is the Hammerstadt
formula

κ = 1 +
2

π
tan−1

[

1.4

(

∆

δ

)2
]

(8)

where ∆ is the rms value of surface roughness and δ is the
skin depth. The knowledge of the real part Rs is sufficient to
create a macromodel in the form of (2) for the complex surface
impedance Zs on the basis of the causality principle.

As an example, a 35µm thick conductor made of copper
(σ = 5.8 × 107S/m), and a surface roughness rms value of
1.61 µm is considered. Figure 7 demonstrates good fitting
results of the RL macromodeling routine against the real part
of Zs, for an order of N = 14. The fitting demonstrated here
is adequate to replicate the behavior of the real part of the
surface impedance, including surface roughness effects, while
achieving a passive result.

An RL macromodel is also desirable to represent the per
unit length resistance of transmission lines. As an example,
Ansys Maxwell 2D simulator is used to model a 200µm
wide, 35µm thick, copper microstrip transmission line on FR4
substrate of 100µm thickness, across frequencies ranging from
DC to 9 GHz. The final objective is to obtain a Foster RL
impedance expression as in (2). The vector fitting algorithm
is implemented to obtain a converging set of stable, real
poles, which are sent into a residue extraction routine. The
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Fig. 7. Top: Hammerstadt surface correction factor. Bottom: corresponding
surface resistance Rs with accurate fitting of an RL macromodel.

residues, in the Foster RL impedance form, have the same
constraints, as discussed in the previous section, and must be
necessarily positive to achieve a minimum-phase, realizable
function. The residue extraction routine implements this by
using non-negative least squares fitting.

The vector fitting provides accurate results in the entire
frequency band for a final order of N = 9 as shown in Figure
8. This methodology ensures that the resulting macromodel is
a passive RL network.
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Fig. 8. Distributed resistance and reactance of a microstrip line.

IV. CONCLUSION

This paper presented for the first time a Debye model for
conductors. This allows a generalized loss model for both
dielectrics and conductors. Extraction of the Debye model

was demonstrated using an analytical approach and a modified
RL/RC vector fitting algorithm. The generated Debye model
for conductors corresponds to an RL network. This approach
was applied to create a model for conductors in the presence
of surface-roughness loss. The proposed RL macromodeling
approach was also shown to be suitable for generating skin-
effect models for transmission lines. The presented models can
be easily used in circuit and electromagnetic simulation of SI
and EMI behavior in PCBs.
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