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1. Introduction 
  

An accurate and stable 3D Volterra Time Domain Integral Equation TDIE algorithm 
capable of running on both structured rectangular grids and unstructured tetrahedral meshes is 
presented here for the first time. This development is in response to recent demands for numerical 
methods to solve volume integral equations in the time domain. The derivation of a flexible, stable, 
accurate and effective numerical tool is presented and moreover it is demonstrated that it is capable 
of accurately approximating the solution of problems accommodating arbitrarily shaped dielectric 
structures with complex features and time varying material properties. Canonical structures are 
considered here to demonstrate stability and accuracy of the algorithm. 

 
Substantial progress has been reported in order to make TDIE algorithms computationally 

efficient in comparison to established numerical methods that are based on the differential form of 
the Maxwell equations such as the FDTD [1] and TLM [2]. As in the case of FDTD [3], it has also 
been observed that almost all numerical approximation of higher dimensional TDIE solutions suffer 
from late time instabilities [4]. In the case of MoM [5] and FE [6] approaches, compensatory 
numerical treatment has focused on a combination of careful design and the choice of spatial and 
temporal bases functions. Nevertheless, complete removal of these late time oscillations has met 
with limited success in the general case. Consequently, it is still often required that special attention 
must be given to the geometry of the structure, its physical parameters and the mesh used. 

 
The problems of instabilities are often attributed to an accumulation on numerical errors 

due to the discretisation on the integrals involved. Consideration of the stability of computer 
algorithms based upon the Volterra TDIE formulation in 1D has previously been reported and their 
solution was significantly improved from the earlier implementations by means of both a semi-
implicit formulation and a central difference Crank-Nicholson technique [7]. Also their solution has 
been demonstrated on a modified rectangular space-time meshes [7], and on unstructured triangular 
space-time meshes [8]. These simple modifications were found to radically increase the flexibility 
of the computer implementations of the algorithm, allowing numerical solutions that are both stable 
and accurate for various media without any reservation on the structure, its mesh or permittivity 
contrast between the discontinuity region and background [7, 8].  

 
However, in the 3D case, a more general treatment of such numerical instabilities is needed, 

and this can be achieved by employing low pass filtering. A digital filter approach is used to 
successfully remove the components of the solution which are prone to instability [9]. Here we find 
that the use of the simple low pass filtering technique, also known as an averaging scheme, is 
adequate to stabilise the computations. This only requires the use of three field values at any given 
moment in time, and therefore saves on the overall computational overhead required to obtain the 
solution. Higher order, finite impulse response FIR filtering, [9] can also be considered; a future 
step towards complete characterisation of this approach which is promising to yield an 
unconditionally stable and accurate algorithm. 
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2. Theory 
 

In general, the electric field in a 3D structure satisfies a Volterra integral equation [10], 
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where b and vb are the relative permittivity and speed of light in the background medium, P is the 
polarisation of the media, Eo is the excitation field and t and r=(x,y,z) denotes the time and space 
coordinates. The equations are based upon generalized functions and are convenient for 
investigating electromagnetic transients, especially those with moving wave fronts and an arbitrary 
time-spatial dependence of the medium parameters, such as plasmas, semiconductors, non-linear 
dielectrics and dissipative media with losses. In principle these modifications can be implemented 
by merely redefining the functions describing the incident field or the medium polarization [7, 10]. 
At each instant of time, the present electric field in (1) is determined via a 4D integral over the 
space-time history of the field. However, this is immediately reduced to a 3D integral due to the 
properties of the delta function, yielding a process which is visualized as integrating over the 
surface of spheres of the time-retarded field values.  

 
When evaluating the spatial integrals, special consideration must be given to the weak 

singularity that exists when the observation point coincides with a source, i.e. |r-r’|=0. At this point 
a small spherical exclusion region is introduced and its contribution to the total integral evaluated 
analytically. Furthermore, simple interpolation is performed to obtain field values in between the 
surfaces of the spheres of integration from the values on the uniform time mesh. It is also noted that 
at each instant in time and space the integrand in (1) is evaluated first as a pre-processing step 

before applying the Green’s tensor 2 2 2.  bv t . The time and space derivative operators are 

then discretised in a straightforward manner using a combination of second order spatial and 
temporal finite differencing schemes respectively. Using basic central difference formulae to 
evaluate the spatial differential operator has been found to be robust in practice. However when this 
is also used for the time derivatives; it has proven less reliable as overall it leads to an explicit 
scheme. This is consistent with experience gained from the 1D case, [7]. To overcome this problem, 
an implicit difference formula for the time derivatives has been adopted [7] and this has proven 
successful in improving stability and therefore accuracy, however, only for a limited range of 
practical material parameters [11]. Thus, a more robust stability analysis is needed to underpin this 
phenomenon as considered thereafter.  

 
For accurate modelling in the 3D formulation, it is also necessary to incorporate a 

stabilisation procedure besides satisfying both the causality and the Courant stability conditions. 
This phenomenon is common to most of the time-marching methods [4, 9], where a number of 
different causes have been attributed such as insufficient sampling of the very high frequencies, 
existence of internal numerical resonances, and/or errors caused while evaluating the intermediate 
quantities. Known stabilising procedures operate through averaging in time [4] and rarely in space. 
For averaging in space or time, the underlying concept is simply a de-correlation of accumulated 
computational noise and therefore, modest supplementary computer resources are required as a 
result. In this work we propose the use of a simple three term averaging scheme [4], which is found 
to be sufficient enough to accurately model the solution. 

 
In this work, the generality of the algorithm is demonstrated by evaluating the discretised 

field values on both Cartesian structured meshes [11] and unstructured tetrahedral meshes [12] with 
equal validity, if not ease for the former case. The choice of spatial mesh size is dictated by the need 
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to sufficiently and accurately sample the field behaviour in the structure. The choice of the time step 
is more flexible than that in the FDTD and TLM methods, and dictated by the Courant condition of 
the underlying Mesh. In the development of TDIE approach, structures are subdivided into an 
adequate number of small elements e, as shown in Fig 1 below, where the sampling 3D field points 
are specified to fall on the center of mass of each element. These elemental values then evolve in 
time with a fixed time step size allowing for signal propagation in time. 

 
 Discontinuity 
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1(a)      1(b) 
Figure1: Structured rectangular mesh in 1(a) and its equivalent unstructured tetrahedral mesh in 1(b) 

(Open space b =1 containing a dielectric r ≠ b) 
  

3. Results 
 

The general scheme is now investigated for validation on both structured rectangular and 
unstructured tetrahedral meshes. For clarity of the algorithmic development, the discontinuity 
region is characterised here by a simple homogeneous, linear, isotropic and nondissipative material 
of relative permittivity 1  whose polarisation function is defined by  

 

1( , ) ( 1) ( , )ot z t z     P E        (2) 

 
To assess the stability and convergence of the numerical results we choose a simple cubic 

structure where the discontinuity region is situated at 0.1mx,y,z0.225m in an otherwise 
homogeneous background, as illustrated in Fig. 1. In this case, the initial field is launched outside 
the discontinuity region, whose permittivity switches from b=1.0 to 1=4.0 at t = 0 whilst the pulse 
is inside it. It is noted that an instant reflection takes place at zero moment in time and this travels in 
the opposite direction to that of the forward propagation with amplitude proportional to 1 and 
reversed in polarity. The transmitted and reflected signals then undergo multiple reflections in time. 
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 2(a)         2(b) 

Figure 2: A Gaussian pulse launched inside the discontinuity region with 1 =4.0 for (0.1mx,y,z0.225m), 
b=1.0 otherwise and r=(0.157μm,0.173μm,0.168μm). (Pulse width=0.065μm centred at 0.0μm) 

2(a) simulation from structured mesh and 2(b) is the corresponding equivalent unstructured mesh. 
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The field distribution at fixed point in space r = (0.157μm, 0.173μm, 0.168μm) is observed and 
the corresponding temporal of the signal are plotted as shown in Fig. 2. A total number of 1000 and 
1027 nodal sample values, denoted as e, are used to obtain the solution with a time step size of 
0.0416fsec and 0.0245fsec for the rectangular structured and tetrahedral unstructured meshes 
respectively. The set of results plotted is presented to demonstrate both stability and convergence of 
the algorithm, where it is observed that the instabilities are completely eliminated upon the 
application of a third order averaging filter technique [4, 9]. 

 
A detailed analysis of the solution accuracy is to be demonstrated. In addition, the 

significant reduction in computer resources that can be exploited via the tetrahedral meshing, and 
the generality of the algorithm, promises to be advantageous when implementing the TDIE to the 
more complex systems. Furthermore, the specific tetrahedral pattern being defined as opposed to a 
uniform rectangular mesh, which takes into account discontinuity and field distribution, promises to 
offer significant scope for adaptive schemes and structures containing a diverse range of feature 
sizes or boundaries that are curved or non-tangential to the coordinate axes. 

 

4. Conclusion 
 

For the first time, a stable 3D, fully vectorial numerical algorithm is investigated for 
validation of the Volterra TDIE method on structured rectangular and unstructured tetrahedral 
meshes. Initial simulations have demonstrated the algorithm both stable and convergent. 
Notwithstanding that there is substantial scope for further assessment of this approach as well as for 
rigorous analysis of its theoretical properties. Also higher order, finite impulse response FIR 
filtering, can also be considered; a future step towards complete characterisation of this approach 
which is promising to yield an unconditionally stable and accurate algorithm. 
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