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1. Introduction 
 
 The Method of Moments (MM) is a numerical method for solving electromagnetic 

problems. It is popular because of its simplicity and most important because it can give very 

accurate results [1]. Inclusion of the edge behaviour of the fields in the expansion functions leads to 

more accurate and fast converging solution [2]. [3] deals with the characterization of an infinite 
array microstrip elements, and it is shown that a complete set of trigonometric functions which do 

not enforce the correct edge behaviour slows significantly the rate of  solution convergence. The 

convergence of the MM is closely related to the choice of expansion functions and, although to a 
lesser extent to the choice of testing functions. Different expansion and test functions were checked 

during the last years in order to get more accurate and fast converging solutions. Expansion function 

consideration for the MM using a lot of different models and techniques. In general, expansion 
functions can be classified into entire domain expansion functions and sub–domain expansion 

functions (rectangular, triangular, etc). 

             Investigation of MM solutions using impulse function defined in infinite domain is 

illustrated by solving simple electromagnetic problem for which the analytic solution is known. In 
this paper we check the efficiency of a MM solution when expansion functions contain impulse 

functions and obey to known physical behaviour of the fields near the edges of the disk and at 

infinity. 
             The structure of the paper is as follows: chapter 2 describes the formulation of the problem 

and includes the analytical solution and the MM solutions. Chapter 3 deals with the selection of the 

expansion functions and numerical results are presented in chapter 4. The conclusions are discussed 
in chapter 5. 

 

2. Formulation 
 

2.1 Geometry of the problem and Analytic Solution 
 The thin, charged disk is shown in fig. 1.  The radius of the disk is R and the total charge on 

it is q. The analytic solution for the charge distribution and ( )E ρ are, 
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and Eρ (ρ, z = 0) = 0 for Rρ ≤  [4]. This solution will be compared to the MM solution based on 

impulse based expansion functions defined in the infinite domain. 
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Figure 1: Infinitely thin, flat circular conducting disk with radius R and total charge q  

 

2.2 Electrostatic Theory related to the Problem. 
           Laplace equation around the disk and the potential function therefore be of the form [4] 
 

                   
2 0          (3)∇ Φ =               0
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where 0 (.)J  is the Bessel function of the first kind [5] and ( )f k must be determined from 

boundary conditions at 0z = and the input data (total charge q on the disk). 

The electric field components are given by, 
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2.3 MM Solution Based on Impulse Expansion Functions Defined in Infinite Domain. 

            Expanding Eρ  outside the disk, on the disk plane, by the MM set of expansion 

functions{ ( ), 1,2,..., }
n

d n Nρ = , where N  is the number of expansion functions, we obtain 
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By using [6-7] we can find ( )f k in term of expansion functions 
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The MM expansion function coefficients are found from the MM set linear of equations by 

expressing ( )f k in terms of the expansion functions, 
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and ( )
n

b ρ  are the test functions. 
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In matrix notation, the (9) can have the form, 
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and ( 1, 2,...., )
N

a a a a= is the vector containing the un-normalized MM expansion function 

coefficients. The normalization is determined by the value of the total charge on the disk. 

 

3. Choosing Expansion and Test Functions 
 

The expansion and test functions are chosen such to obey the physical behaviour of ( )E ρ near the 

edge of the disk and at infinity. The behaviour of ( )E ρ  is given by, 
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It can be shown that the set of expansion functions for ( )E ρ , 
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and test functions, 
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are contains all the needed powers near the edge of the disk and at infinity. Note that these functions 

do not include 'wrong' powers - powers that not belong to the correct edge powers for Rρ→ and 

for ρ→∞ . In additional, these functions have analytical Fourier-Bessel transform. 

 

4. Numerical Results 
 

For simplicity we choose 1R = and 1q = .The MM matrix elements where analytically calculated 

by MATHEMATICA software [8]. The charge density ( )σ ρ on the surface of the disc is given by: 
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The surface charge density is shown in fig. 2, and shows a very good rate of convergence for the 

solution. A zoom on the area near the centre of the disk is shown in fig. 3.  

 

5.  Conclusions 
 
          The possibility to apply the moment method by using impulse functions as expansion 

functions describing the fields in an infinite domain (outside the body) has been checked, and it is 

shown that accuracy and converging rate has been achieved. The key point was the requirement that 
the expansion functions will exactly obey the physical behavior of the fields near the edge of the 

body and at infinity.  

          We can conclude that efficient MM solutions based on impulse functions defined as 

expansion functions is possible and all results achieved during solution of the problem involves just 
analytically solved integrals with no numerical techniques. As a result it is possible to use a large 

number of expansion functions (even hundreds) for achieving much more accurate results. And 

most important point that all calculations are fast because of the nature of impulse functions.  The 
efficiency of the MM solution based on impulse functions as expansion functions defined in the 

infinite domain has to be checked in the future for electromagnetic problems. 
 

 
 

 
 

  

 

 

 

 

 

 
Fig. 2: Surface charge distribution on the disk.                    Fig. 3.  Zoom on the centre of the disk 
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