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Abstract—A stochastic resonance (SR) for the pur-
pose of signal detection is investigated. SR conventionally
refers to the amplification of a weak signal in the average
of the output. This means that only the first moment of
the output is considered in the conventional SR. In con-
trast, higher moments of the output are also modulated by
the input signal, and include statistically independent in-
formation about the signal. We find that such higher mo-
ments can exhibit SR behaviors. The signal-to-noise ra-
tio (SNR) improves compared with the conventional SR,
by the appropriate aggregation of the information obtained
through the SR in moments. The aggregation is realized
by the method known as principal component analysis
(PCA). The SNR obtained by PCA also exhibits SR be-
haviors. We investigate the SR behaviors of moments in a
K-valued non-dynamical system.

1. Introduction

Noise has been focused on its negative side in the field
of signal processing: a deterioration of the signal detection
performance. However, the discovery of the phenomenon
nowadays called stochastic resonance (SR) has opened
the positive exploitation of noise. Benzi et al. reported
that a weak signal in noise environment can be enhanced
by tuning the noise intensity [1, 2]. Since the discovery
of SR, the positive application of noise has been widely
explored [3, 4]. Signal detection and amplification using
SR have been investigated intensively in a variety of non-
linear systems such as the Schmitt trigger [5], the neuron
model [6], and SQUID [7].

In this paper, we focus on the signal detection perfor-
mance that is achieved by the use of SR in moments. An
input signal modulates all moments of the output from a
nonlinear device. Then, each of the statistically indepen-
dent moments has independent information about the input
signal. We will show that such moments can exhibit SR
behaviors. In contrast, the conventional SR refers only
to the signal amplification in the first moment of the out-
put. Thus, the SR displayed in this paper is a novel type
of SR. Since the first moment is the only statistically in-
dependent moment in a 2-valued system, the conventional
SR achieves the true signal detection performance in a 2-
valued system [6, 8, 9]. On the other hand, in K-valued
systems, the potentially achievable high signal detection
performance characterized by signal-to-noise ratio (SNR)

is obtained only when all of the statistically independent
moments are concerned. However, even for K-valued sys-
tems, the SR behavior of only the first moment is focused
in conventional studies [10, 11].

The goal of the present paper is to show that signal de-
tection performance is improved by aggregating the infor-
mation obtained from the SR in higher moments. Such
an aggregation is provided by the method called principal
component analysis (PCA). In the proceeding section, SR
phenomena in moments is presented. Then, the informa-
tion aggregation using PCA is presented in section 3. The
last section is devoted to the concluding remarks.

2. SR in Moments

Throughout this paper, we deal with a K-valued discrete
time non-dynamical system [10, 11]:

xn = F(sn + zn), (1)

where sn, zn, and xn represent an input signal, noise, and
the output at time n, respectively. The noise zn is a white
noise: ⟨znzm⟩ ∝ δnm, where ⟨·⟩ represents an expectation
value. Furthermore, the input signal sn is assumed to be
small compared to the noise intensity, since of our interest
is the detection of a weak signal. The function F is a K-
valued discrete function: F(X) = ak for X ∈ Ik, where the
domains {Ik} satisfy Ik ∩ Il = ϕ for k , l and ∪K−1

k=0 Ik = R
(k = 0, 1, · · · ,K − 1). The real constants {ak} are provided
as ak , al for k , l. A schematic system-flow diagram is
depicted in Figure 1.

In order to analyze the signal detection performance us-
ing the information included in moments systematically,
we first consider a small constant input signal sn = s
(|s| ≪ 1) for all n. Then, the system is regarded as out-
putting a (K − 1)-dimensional vector (M1, · · · ,MK−1) that
is a sequence of the statistically independent K − 1 empiri-
cal moments Mk =

∑N−1
n=0 xk

n/N (k = 1, · · · ,K − 1), where N
is the time length of the observation or the number of the
sampled outputs. In order to obtain K − 1 statistically inde-
pendent moments from the outputs, we assume N ≥ K − 1.
Owing to the stationarity of the stochastic process, the esti-
mated input signal ŝ = ŝ(x0, · · · , xN−1), which is a function
of the output sequence, is invariant under the permutation
of the outputs (x0, · · · , xN−1) → (xn0 , · · · , xnN−1 ). Note that
the output sequence {xn} (n = 0, · · · ,N − 1) is determined
by the K − 1 empirical moments.
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Figure 1: Schematic system-flow diagram of a K-valued
non-dynamical system. The system can be regarded as out-
putting the vector (M1, · · · ,MK−1).

Since the input signal is sufficiently small compared with
the noise intensity, the moment Mk can be written as

Mk = mk + χk s + ηk + O(s2). (2)

Here, mk is the expectation value of the k-th order moment
without the input s, i.e., mk = ⟨Fk(z)⟩, χk is the response
coefficient χk = ∂⟨Fk(s + z)⟩/∂s|s=0, and ηk denotes the
fluctuation. In this expression, χk s represents the deter-
ministic signal part of the output in the moment, and ηk

corresponds to the noise part.
The experimentally obtained output signal in the k-th or-

der moment is contaminated by the fluctuation at the output
channel as χk s + ηk. Here, the offset mk is subtracted from
the moment Mk. In order to obtain the SNR, it is required
to calculate {mk} and {χk}. These are calculated from the
probability density of the noise zn with the form of the func-
tion F. Furthermore, the calculation of the SNR needs the
quantity ⟨η2

k⟩, since the SNR for the k-th order moment is
given as Rk = χ

2
k s2/⟨η2

k⟩. Using the covariance of the fluc-
tuations in the k-th and l-th order moments ⟨ηkηl⟩ = Vkl/N,
where Vkl ≡ ⟨

[
Fk(s + z) − mk

] [
F l(s + z) − ml

]
⟩, the SNR is

expressed as Rk = s2NR̂k with the definition R̂k = χ
2
k/Vkk.

In this paper, R̂k is referred as the scaled SNR for the k-th
order moment.

Above, a constant input signal has been assumed. How-
ever, for the sake of information transmission, temporally
varying input should be considered. If the input signal
varies slowly, we can indeed calculate the SNR under such
a condition. Consider a slowly varying signal sn: sn = s̃i

with n = Ni + j ( j = 0, · · · ,N − 1 and i = 0, · · · , N̂/N − 1).
Then the signal sn is constant in a time scale of N but varies
in the larger time scale N̂ ≫ N. In the large time scale,
Eq. (2) is replaced by Mk,i = mk+χk s̃i+ηk,i, where Mk,i and
ηk,i denote the empirical moment and its fluctuation at the
coarse-grained time i, respectively. Then, the SNR is given
by Rk = N̂PsR̂k, where Ps is the power of the input signal
Ps =

∑N̂−1
n=0 s2

n/N̂. Note that the conventional SNR Rconv
k

for the k-th order moment defined by the power spectrum
density S̃ s,k(ω)/S̃ η,k(ω), where S̃ s,k(ω) denotes the signal
power density of the output at the input signal frequency
ω and S̃ η,k(ω) is the noise power density, is connected to
the above defined SNR Rk via the relation Rconv

k S̃ η,k(ω) =
Rk
∫ ∞
−∞ S̃ η,k(ω′)dω′. This relation follows from the result of

Parseval’s theorem
⟨
η2

k

⟩
=
∫ ∞
−∞ S̃ η,k(ω′)dω′. Here we have

used the assumption that the noise zn is white.
In experiment, the SNR is attained from the correlation

coefficient Ck between the input and the output. The cor-
relation coefficient Ck is defined as

Ck =

N̂/N−1∑
i=0

(s̃i − s̄)
(
Mk,i − mk

)
√√√N̂/N−1∑

i=0

(s̃i − s̄)2

√√√N̂/N−1∑
i=0

(
Mk,i − mk

)2 , (3)

where s̄ is the time average of the input signal s̄ =∑N̂/N−1
i=0 s̃i/(N̂/N) =

∑N̂−1
n=0 sn/N̂. If the input signal si is

sufficiently small (|s| ≪ 1) and slow, the approximated ex-
pression of the correlation coefficient Ck is given as

Ck ≈
(
1 + 1/PsR̂k

)−1/2
. (4)

This expression bridges a gap between the experimentally
obtained correlation coefficient and the theoretically pre-
dicted SNR. If the input signal, the probability density of
the noise, and the function F are all known, the experimen-
tal results can be compared with the theory via this rela-
tion.

The scaled SNR R̂k is shown as a function of the stan-
dard deviation σ of the noise zn in the inset of Fig. 2. We
have here used a white Gaussian noise with zero mean, i.e.,
⟨zn⟩ = 0 and ⟨znzm⟩ = σ2δnm. The input signal is assumed
to be sinusoidal: sn = ϵ cos nωwith ϵ = 0.1 and ω = 0.001.
We have used a 3-valued function as F: F(y) = a0 for
y < θ1, F(y) = a1 for θ1 ≤ y < θ2, and F(y) = a2 for y ≥ θ2
with the parameter sets (a0, a1, a2) = (3.0,−10.0, 1.0) and
(θ1, θ2) = (−1.0, 1.0), i.e., I0 = (−∞,−1.0), I1 = [−1, 1.0),
I2 = [1.0,∞). The theoretical curves are directly given by
the relation R̂k = χ

2
k/Vkk, and R̂k for the simulation results

are calculated from the correlation coefficient (4).
Fig. 2 clearly shows that the first and the second mo-

ments both exhibit SR, which is characterized by the
resonance-like peaks. Note that, in general, the locations
and the heights of the peaks for R̂k both depend on the sys-
tem settings {ak} and {Ik}. Furthermore, the occurrence of
the SR, i.e., the non-monotonic change of the SNR in each
moment also depends on {ak} and {Ik}.

3. Information Aggregation via PCA

Aggregation of the information in the statistically inde-
pendent moments can yield the signal detection perfor-
mance higher than the conventional SR using only the first
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Figure 2: Scaled SNR R̂ obtained by our information aggre-
gation method using PCA, and those for the first moment
R̂1 and the second moment R̂2. The theoretical results (solid
and dashed lines) are directly obtained from Eq. (8) and
R̂k = χ

2
k/Vkk. The simulation results (circles and squares)

are evaluated from the relation between the correlation co-
efficients and the SNR Eqs. (4) and (10).

moment. The appropriate aggregation is realized by the
statistical tool known as PCA [12, 13]. PCA provides the
appropriate linear projection of the vector (M1, · · · ,MK−1)
modulated by the input signal in (K−1)-dimensional space
to elicit the signal part. Such a projection gives the maxi-
mum SNR.

Consider a linear projection of (M1, · · · ,MK−1) onto R.
This linear projection is expressed as

y =
K−1∑
k=1

wk Mk, (5)

where the weight wk is determined so as to maximize the
SNR as follows. If the input is a constant small signal, the
formal expression of the SNR for y is given as

R = s2N

K−1∑
k,l=1

wkwlχkχl


K−1∑

k,l=1

wkwlVkl


−1

, (6)

because of the asymptotic expression of the projected out-
put y: y =

∑K−1
k=1 wk(mk + χk s + ηk) + O(s2). Then, the

maximization condition on the SNR ∂R/∂wk = 0 for all
k(= 1, · · · ,K − 1) determines the optimal weight as

wk = α

K−1∑
l=1

V−1
kl χl, (7)

where V−1
kl is the inverse matrix of the covariance matrix V ,

and α is an arbitrary (non-zero) real constant. Substituting
the optimal weight (7) into Eq. (6), we find the SNR as

R = s2NR̂, R̂ ≡
K−1∑
k,l=1

V−1
kl χkχl. (8)

For a slowly varying signal, similarly to the replacement in
the previous section, the SNR (8) is replaced by R = N̂PsR̂.

The important feature of the SNR obtained by PCA is
that it does not depend on the choice of {ak}. R is invariant
under a non-singular linear transformation of the empiri-
cal moments Mk →

∑K−1
l=1 AklMl, where A is an arbitrary

regular matrix. This is straightforwardly checked from the
transformation of the weight wk and the covariance matrix
V: wk →

∑K−1
l=1 A−1

kl wl and Vkl →
∑K−1

k′,l′=1 Akk′Vk′l′Al′l. Note
also that the empirical probability Pk =

∑N
n=1 δ(xn, ak)/N

is given as a linear combination of the empirical moments.
Against this background, the values of {ak} play the role of
a label on Pk only. Therefore, the SNR acquired by PCA
is concluded to be determined only by the empirical prob-
abilities {Pk}. In the above expression, the notation of the
Kronecker delta δ(u, v) = δuv has been used. In addition,
the SNR (8) does not depend on the arbitrary constant α.

In contrast to the invariance on the choice of {ak}, the do-
mains {Ik} controls the height and the location of the peak
of the SNR R. This is because the empirical probability
{Pk}, which is the source of the information on the input
signal, depends on {Ik}. Furthermore, the domains {Ik} af-
fect the non-monotonicity of R, i.e., the occurrence of SR.

Because of the optimization, the SNR obtained via PCA
gives the highest SNR over those for all possible linear
combinations of the empirical moments. Therefore, the
SNR acquired in this framework is confirmed to be higher
than the SNR for any single moment, i.e., R ≥ Rk. As
a consequence, the information aggregation method using
PCA yields the signal detection performance higher than
the conventional SR.

Note that, only in a 2-valued system, the conventional
SR, which uses only the first moment, is equivalent to
our information aggregation method. This is because the
first moment is the unique statistically independent mo-
ment in a 2-valued system. Note that the conventional
SR in a 2-valued system reproduces the same signal detec-
tion performance as that is attained by the maximum like-
lihood method, which is based on the empirical probability
Pk [6, 8, 9].

Similarly to the case in the previous section, the input–
output correlation coefficient connects experimentally ob-
tained data with the SNR theoretically calculated above.
The probability density of the input noise zn with the form
of the function F gives the concrete values of {χk} and {Vkl}.
Then, the scaled SNR R̂ is calculated from Eq. (8). In
contrast, in experiments, the decomposition of the output
data into the signal and noise parts in order to acquire {χk}
and {Vkl} to evaluate the SNR. However, for the purpose of
checking the coincidence between the theory and the ex-
periment, such a decomposition of the outputs is not re-
quired. The correlation coefficient provides the SNR with-
out the decomposition of the output signal. Under the con-
dition where the probability density of the input noise zn,
the function F, and the slowly varying input signal s̃i are
all given, the correlation coefficient is calculated from the
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experimentally obtained data {Mk,i}. The input–output cor-
relation coefficient is defined as

C =

N̂/N−1∑
i=0

S i

K−1∑
k,l=1

µk,iV−1
kl χl√√√N̂/N−1∑

i=0

S 2
i

√√√N̂/N−1∑
i=0

K−1∑
k,l=1

µk,iV−1
kl χl


2
, (9)

where S i ≡ s̃i − s̄ and µk,i ≡ Mk,i −mk. The same notations
as in the case for Ck have been used for the input and out-
put signals. Note that the correlation coefficient C can be
expressed asymptotically in terms of the scaled SNR as

C ≈
(
1 + 1/PsR̂

)−1/2
. (10)

Since {S i}, {µk, j} and Vkl all can be calculated from the
given function F and the probability density of the input
noise zn with observed data {Mk, j}, the correlation coeffi-
cient C can be obtained experimentally. Then, the scaled
SNR R̂ is calculated by the above relation.

In this framework, the input signal is estimated as ŝ =∑K−1
k=1 wk(Mk −mk)/

∑K−1
k=1 wkχk, which is an experimentally

obtained random variable. The SNR R gives the accuracy
of this estimation.

In Fig. 2, the theoretically obtained scaled SNR is com-
pared with that evaluated from numerical simulations. The
function F, the input noise {zn}, and the input signal {sn} are
the same as those for R̂k in the inset of Fig. 2. In Fig. 2, we
find a resonance-like peak in the SNR attained via PCA that
implies the occurrence of SR. Note that the peak height of
R̂ is significantly larger than that of each moment R̂k. Thus,
the signal detection performance is concluded to be im-
proved by the information aggregation via PCA, compared
with the conventional SR using only the first moment.

4. Concluding Remarks

In this paper, the novel type of SR phenomena, which
occur in moments, is presented. In order to investigate the
signal detection performance using such phenomena, we
have obtained the formal expression of the SNR for mo-
ments. Furthermore, we have proposed the information ag-
gregation method that yields the SNR higher than that for
any single moment. The aggregation method is realized by
PCA, and collects the information contained in statistically
independent moments.

An advantage of our proposed information aggregation
method is its high signal detection performance. Our ap-
proach is confirmed to yield the signal detection perfor-
mance higher than that achieved by the conventional SR,
which uses only the first moment of the outputs.

Another advantage of our method is its robustness
against the change of system parameters. The SNR ob-
tained via our approach is independent of the details of the
system parameters {ak}. In contrast, the conventional SR is
sensitive to the change of such system parameters.
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