
Enhancing OpenFlow Actions to Offload Packet-In
Processing

Hamid Farhadi, Ping Du, Akihiro Nakao
The University of Tokyo

{farhadi, ping, nakao}@nakao-lab.org

Abstract—Software-Defined Networking (SDN) increasingly
attracts more researchers as well as industry attentions. Open-
Flow as a major API for SDN applies <match, action> rules to
every packet. However, it only supports a few actions that are all
predefined. We extend this limitation of OpenFlow and propose
User-Defined Actions (UDAs) for SDN. We discuss usecases of
UDAs and propose an architecture to realize UDAs. Using our
architecture we conduct a series of tests. We indicate that our
UDAs can elevate millisecond-scale running time of current
proposals to nanosecond-scale (including proposals from north-
bound applications of SDN community and virtual appliances
of Network Function Virtualization or NFV community). Also,
regarding ease of programmability, we show that our proposal
decrease the lines of code of by 72.9% and 79.3% compared to
implementing the same functionality as a northbound application
and as a standalone middlebox, respectively. In addition, we
extended OpenFlow to support UDAs and implemented a few
sample UDAs.

I. INTRODUCTION

OpenFlow is a wide-spread SDN API. This API installs
a set of <match, action> rules on network switches. Any
flow matching to the rule, receives the corresponding ac-
tion. OpenFlow proposes a programmable control plane but
a configurable-only data plane. That is, the user can write a
program on top of the controller to perform a task such as
load balancing. By the configurable data plane we refers to the
TCAMs that are only able to match flows against a predefined
set of fields and the OpenFlow enabled switch (i.e., OpenFlow
data plane) can be configured to execute some of the predefined
actions on packets. So, OpenFlow has two major shortcomings:

• Predefined flow field-matching: OpenFlow defines a
set of fixed predefined protocols and fields and in-
structs the data plane to match all the packets against
them.

• Predefined actions: OpenFlow defines a small set
of actions including forward, drop and meter to be
executed on packets. The set is not extensible or
programmable.

In this paper we relax the latter limitation of OpenFlow and
propose User-Defined Actions (UDA) to increase the flexibility
of current SDN definition. Our contribution in this paper are
two folds. First, we show usecases of UDAs and propose a
programmable architecture that extends the traditional SDN
definition to support UDA. Second, via our evaluations we
show the feasibility of UDAs in terms of throughput and their
effectiveness in terms of ease of programmability. The rest of

the paper is organized as follows. After discussing use usecases
of UDAs we explain our proposed architecture following by
evaluation results and concluding remarks.

II. USER-DEFINED ACTION USECASES

The main reason behind the need for user-defined actions
is to offer a more flexible SDN data plane compared to cur-
rent limited and hardware-centric SDN data plane. The main
challenge in front of this is the tradeoff between flexibility
and performance. In this paper, we discuss this tradeoff and
evaluate the feasibility of providing such a flexibility using
real world experiments. In addition, there are other reasons
that make user-defined actions interesting for the community.

In the OpenFlow context (and to some extent in the current
SDN context) a northbound application is implemented on
top of controller and calls the controller to perform a task.
In contrast, southbound means the layer consist of switches
and forwarding plane. We believe data plane programmability
is as important as that of control plane programmability.
However, there are less work from the community in this
area compared to OpenFlow model that advertises control
plane programmability. Todays, northbound applications are
considered as hot topic(e.g.,[1]). However, giving examples of
useful applications in this area is not a trivial task as there are
several limitations in the control plane.

The major limitation in the control plane is the lack of
access to the packet payload. That is why it is infeasible
to have applications that filter more than a bitstream match
(i.e. the OpenFlow classification model) on the packet. For
example, an Intrusion Detection System needs to look at the
whole packet and even buffer a couple of packets to detect an
intrusion while sending packets to the controller for intrusion
detection is infeasible because of performance considerations.
With current proposals from Network Function Virtualization
(NFV) community, all data plane related tasks should be
executed in dedicated boxes that are possibly getting advantage
of virtualization technology. While this promising approach
is beneficial in many ways, it can be a limiting factor as
well. Although for heavy tasks (such as running a heavy IDS)
we may need an external box, in case of light small tasks
that come handy in networking, making a separate box is
not a reasonable approach. Current SDN proposal only offers
northbound interface to realize such applications.

To support our argument, we implemented some examples
of northbound security applications from a related work [1] in
three deferent architectures to see the difference. In particular,

Copyright IEICE - Asia-Pacific Network Operation and
Management Symposium (APNOMS) 2014

TABLE I. COMPARISON OF OVERHEAD IN NORTHBOUND (I.E., FRESCO[1]) APPLICATIONS VERSUS SOUTHBOUND USER-DEFINED ACTIONS VERSUS
VIRTUAL APPLIANCE MIDDLEBOXES

SDN overhead (msec) NFV overhead (msec)
Control Plane [1] Data Plane (UDA) Virtual Appliance

PortScanner Detector 7.196 0.000001 0.001280609

BotMiner Detector 15.421 0.000004 0.001630215

P2P Plotter 11.775 0.000004 0.001312178

!"#$%&'())

*(+,-.)

/'0,.1'2$3)

4""5)

67-8#,)

9'$,0'&�)

9'$,0'&)6&7$#)

:7,7)6&7$#)

:
#
,#
-;
'
$
).
7
"
"
#
$
5)
.
#
0#
)

*
#
$
5+
$
<
).
7
"
"
#
$
5)
.
#
0#
)

Fig. 1. Northbound application overhead evaluation architecture

once as UDAs in the data plane (i.e. southbound) and once in
the form of virtual appliances as Network Function Virtualiza-
tion (NFV) components and compare it with the northbound
application architecture proposed in [1]. We discuss more
implementation details in Section IV.

Specifically, we implemented three actions; Port scanner
detector and BotMiner Detector and P2P Plotter based on the
descriptions in [1]. Port scanner detector looks for repeated
attempts to connect to a closed port on a system (i.e., the
victim) from another system (i.e., the attacker). This kind
of detectors help to find worm-infected machines that are
scanning the network for new victims. BotMiner detector is
another simple action that clusters network nodes based on the
output of port scanner detector to detect bots via co-clustering
of nodes producing network anomalies. Finally, P2P Plotter is
a malware detection service that looks for two characteristics
to detect peer-to-peer malware. First, P2P malware usually
produce less amount of traffic compared to benign P2P client
software. Second, P2P malware nodes have less churning
rate. That is, P2P malware nodes commonly establish longer
connections compared to benign clients. P2P Plotter co-clusters
the nodes that exhibit both features.

Table I illustrates the difference between the overhead of
running three applications as UDAs on the data plane (i.e.,
southbound) versus the control plane (i.e., northbound) and as
a virtual appliance (i.e., NFV). To understand the difference
between these three architectures we explain each of them
briefly.

!"#$%&'()' *%+,-'().'
/(#0$123'*443#2-%5.6'

7,.$'8!'

92%:5$'

7,.$';<='

>15.$'()'

?5$5%+,-'&2445-.'&505'

!5-.#-@'&2445-.'&505'

Fig. 2. NFV application overhead evaluation architecture

A. Northbound (or Control Plane) Applications

The control plane implementations show the overhead de-
lay of running elements on FRESCO [1] framework. FRESCO
is a Click [2] like framework to develop elements for security
applications at northbound. Figure 1 indicates the architecture
of northbound application. In a traditional OpenFlow inspired
SDN architecture, the data plane consists of an open flow
enabled switch that depending on the specific OpenFlow
version support the related features. On the control plane
side, there is a programmable OpenFlow controller with a
set of applications running on top of the controller. Different
controllers may support different languages and features for the
guest (i.e., northbound) applications. A key point to understand
the underlying reason behind the considerable difference in
overheads in Table I is to note where the sensing and detection
happens physically. The small black triangle shows that the
detection mechanism happens on the controller based on the
sensing information captured by data plane (denoted by a small
black circle). Therefore, the sensing data goes via the wire
from switch to the controller that produced some overhead.

B. NFV Appliances

Figure 2 indicates the architecture of NFV application
we use for evaluation. The application is located within a
guest virtual machine. The switch running the application is
also running in another virtual machine and the connection
among them is via the virtual network in the host operating
system. Table I shows NFV applications are almost 100 times
faster than control plane applications. In fact, it depends
on the architecture. Since we put both the switch and the
virtual appliance within a single virtual network, NFV shows a
considerable performance increase. However, in a typical NFV
scenario, switch is located on a separate machine from virtual
appliances. In the latter case, the difference between NFV and
northbound application is less as we move from virtual network

!"#"$%&"'($)'*+,-'.('#$

%"/0(#$ 12+#/3$$

4-.5-'('#$

6-"78$
98(,:!(;'(7$

</=-'8$

4-'#,-&&(,$

4-'#,-&$%&"'($

!"#"$%&"'($

!(#(/=-'$3"55('8$3(,($

1('8+'>$3"55('8$3(,($

Fig. 3. UDA overhead evaluation architecture

to a physical network that connects machines hosting switch
and appliance VMs.

C. User-Defined Switch Actions

Figure 3 illustrates the architecture we use for UDA
evaluation. The figure shows a data plane environment that
settles switch and actions as different components. We use
Click Modular Router to implement this architecture. Hence,
the switch as well as UDAs are all Click elements. As it is
shown in Figure 3, we do not connect actions and switches in
the serial manner (as the regular use case in Click configuration
files). Rather, we implemented actions as a passive-like (or
plugin-like) element and include it in the switch code in
a way that the switch can load the external user-defined
action element to execute it. We explain more implementation
details in Section IV. The overhead of UDA deployed on
the data plane is in nanosecond scale while the others are in
microsecond scale. That is because, first, sensing and detection
happens physically at the same machine and no information
is transferred over physical or virtual network and second, the
switch and UDAs are all on a single shared platform in contrast
to NFV case in which the packet should go through the whole
protocol stack of virtual appliances. We explain more details
about UDA architecture in Section III. In conclusion, data
transmission and VM overhead are two major limitations of
alternative methods that make UDA an interesting candidate
for applications.

III. SYSTEM ARCHITECTURE

In this section we introduce the architecture that enables
UDAs to be defined and programmed. Figure 4 depicts the
overall architecture of our proposal. Following current popu-
lar SDN architecture, our system consists of two physically
separated planes: control plane (at the top of the figure) and
data plane (at the bottom of the figure). Before digging into
our design objectives we define three main roles involved
in the system. We consider an environment to publish a
typical (commercial) service for end-users such as online video
streaming service.

• Network/Infrastructure provider: Is the entity that pro-
vides the hardware and cabling infrastructure plus

!
"#
$%
&
'
(

)
"#
$%
&
'
(

*+,-.%$+/%01&(2%3',(4+5'5(61771&89(

:;<(='$#',8(

>8',(!1?'(4#,1@,%77%A+$+-3($%3',9(

B
'
&
'
,%
-'
(6
1
&
C
@
(#
%
,%
7
'
-'
,8
(

(((:;<(!1?'8(

DE+-6FG(

4:;<9(!1&-,1$$',(

;%,%7'-',8(

:;<G(:;<H(!"!"!"

:;<G(:;<H(!"!"!"

(8
1
6I
'
-(

DE+-6FH(

!"!"!"

!"!"!"

:;<J(
!"!"!"

Fig. 4. UDA/API control and data plane architecture

the programmable SDN environment. Infrastructure
provider gives the user, a programmable environment
including control and data plane programmability fea-
tures to develop, test and run arbitrary networking
software. We do not define the exact form of such
an environment since depending on the application
different technologies can be used for this objective.
An example technology to provide a programmable
environment is network virtualization where each user
has one slice and a set of resources fully isolated
from other slices. There are a couple of ways to
implement this kind of environment in the literature
(e.g., OpenTag [3]) that are out of the scope of this
paper. Our focus in this paper is how the infrastructure
provider designs the a programmability feature of data
and control planes particularly for UDAs. So, we leave
other concerns such as isolation and management
issues for future work.

• User (or service provider): Is the entity that is going
to program the data and control planes to publish a
service for end-user. Needless to say, infrastructure
provider and user can be the same entity.

• End-user (or service user): Is an individual who
consumes the service provided by the service provider
(or user).

After defining the terminology we use to explain our architec-
ture, we move on to defining our design objectives as follows:

• To keep the current architectural benefits of SDN
caused by separation of data and control plane and
related abstractions.

• To extend SDN data plane to support programmability.
That is, using our architecture, the user is able to
define arbitrary API or UDA and use it.

• To extend SDN control plane to support defining new
APIs such as UDAs.

The data plane of our architecture consists of switches that can
locate data plane API codes. Switches may have different types
of APIs and each API may have its own set of parameters.
Control plane can modify API parameters on the data plane
(i.e., switches). The control plane is made up of three layers;
The Virtualization Layer is responsible for common tasks
including basic functions (e.g., connectivity) and gathering
the information from the switches about available APIs and
making an abstraction of network topology. The API Helpers
layer are procedures that implement methods each API needs
on the control plane. For example, if an API should read some
information from the data plane and then execute some calcu-
lations on the data gathered from the network on the controller,
then corresponding API helper component is responsible for
such a task. Put it other way, each API function spans over
both data and control plane. Hence, a part of the API code
is physically on the data plane (indicated as API codes in
the figure) and another part is located on the control plane
(indicated as API helpers in the figure). Based on the user
code, API helpers along with the virtualization layer compute
and install appropriate parameters on the data plane. Finally,
the User Code layer includes the user code on the controller.

The most important difference between our architecture and
traditional SDN controllers is that we locate the API codes
on the data plane. To clarify the issue, we use OpenFlow as
an example of traditional SDN API which spans over both
data plane (i.e., OpenFlow enabled switches) and control plane
(i.e., OpenFlow controller). At the data plane side, OpenFlow
uses hardware-centric data plane components such as TCAM
that implements the data plane side of the API logic on
the switch including the OpenFlow actions. In contrast, our
architecture fosters a software-defined data plane that can
include multiple user-defined APIs. We realize and evaluate
UDAs as an example API in this architecture. So we look
at UDAs as special APIs that can be loaded in a plugin-like
fashion to the switch to be executed accordingly. The switch
triggers execution of UDAs in a similar way to the traditional
SDN. That is, once a flow is matched against a row in the
switch forwarding table, a set of actions defined by the user
for that specific flow are executed on every packets of that
flow.

A. Ease of Programmability

In this paper, we propose a solution for programmabil-
ity of the data plane. Accordingly, an important factor to
show the effectiveness of the programmability is ease of
programmability which refers to how easy it is to develop an
arbitrary program using the proposed solution or method. To
support our proposal, we implemented two anomaly detection
algorithms from a related work (i.e., [4]) to compare ease
of programmability in different architectures. Specifically, we
implemented Rate Limit [6] and Threshold Random Walk with
Credit Based Rate Limiting (TRW-CB) [5] algorithms. The
TRW-CB is a method to detect infected hosts by worms that are
already started scanning other nodes. It assumes the number
of successful connection attempts from non-infected nodes is
higher than infected nodes. The TRW-CB applies a likelihood
ratio test to classify nodes using a queue of TCP SYNs for
every node that is not received the SYNACK response yet. In
case of time out or TCP RST message for any queued SYN, the
likelihood ratio of that specific host will be incremented by the

algorithm. Similarly, Rate Limit algorithm assumes infected
nodes try to connect to a large number of nodes in a short
span of time. It keeps track of recent attempts for connection
from all the hosts in the network and matches new attempts
against the recent attempts list. Connection from nodes that
perform many attempts are delayed in a queue of a limited
size. Once the queue reaches a threshold size, the source host
will be considered as an infected node.

Table II compares the size of source code (i.e., LoC) to
implement aforementioned detection methods in different ar-
chitectures. The control plane implementations refer to Python
language code written on top of the NOX controller. The
middlebox implementations are in C language. By the term
middlebox we refer to implementing the detection method on
a standalone machine that sends/receives packets to/from its
physical NICs. In contrast to typical Click element usecases
(as we mentioned in Section II-C) we implemented UDAs
as a passive-like Click elements and include them in the
switch code in a way that the switch can load the external
UDA element to execute it. The reason behind such an
implementation is ease of programmability. Since the UDA
is implemented in a separate element, the code is cleaner and
more extendable. Furthermore, including the action element
in the switch code takes a few lines of code so that the extra
work caused by providing programmability is reasonable. This
not only keeps the action code clean, but keeps the switch
code simple and clean even after adding UDAs. Since we use
Click to implement our UDAs, we calculate the LoC using
the summation of Click configuration file and the LoC of
the element source code. Note that we do not consider the
LoC of the Click Router itself similar to NOX case that we
only include the LoC of the program written on top of NOX.
Moreover, Our controller is a standalone program that connects
to the switch using sockets. It can retrieve the list of online
switches and the catalog of available APIs from every switch.
Using these information user can write programs. Currently,
our controller supports only C++ programmability. We build
a Python wrapper over some functions of the controller so
that the user can write Python script to program the controller
and manipulate parameters on data plane. Table III indicates
the comparison of ease of programming using a northbound
programming framework and UDA implemented at south-
bound. FRESCO as a northbound application development
framework is made for easier application development at
controller. However, comparing UDA and FRESCO using the
three sample applications, we can see almost similar lines of
code in both solutions. The minor difference we see can be the
result of difference programming languages. In fact, Python
scripting language (used in FRESCO) can reduce the code
size compared to C++ programming language. We believe the
majority of the difference we see in Table III is caused by the
difference between Python and C++. Hence, we consider sim-
ilar lines of code using two different approaches eventhough
FRESCO is an additional framework on top of the controller. If
we count the LoC of the FRESCO framework itself (excluding
the controller LoC), the result will be different and UDA lines
of code will be less than FRESCO applications. In conclusion,
using UDAs implemented on data plane we can reduce the
LoC by 72.9% and 79.3% compared to implementing the same
functionality on control plane and as a standalone middlebox,
respectively.

TABLE II. COMPARISON OF EASE OF PROGRAMMABILITY IN NORTHBOUND [4] APPLICATIONS VERSUS SOUTHBOUND UDAS VERSUS MIDDLEBOXES

Lines of Code (LoC)
SDN

Middlebox [4] (C)
Control Plane (i.e. NOX in Python) [4] Data Plane UDA (C + config)

TRW-CB [5] 741 196 (181+15) 1060

Rate Limit [6] 814 225 (205 + 20) 991

TABLE III. COMPARISON OF EASE OF PROGRAMMABILITY IN NORTHBOUND (I.E., FRESCO [1]) VERSUS SOUTHBOUND (I.E., UDAS)

Lines of Code (LoC)
Northbound implementation via FRESCO (Python + config) [1] Southbound implementation via UDA (C + config)

Port scanner Detector 229 (205+24) 264 (249 + 15)

BotMiner Detector 352 (312 + 40) 575 (548 + 27)

P2P Plotter 259 (227 + 32) 302 (281 + 21)

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

#!"

#" $" %" &" '" ("

,-."$'(/"

,-."'#$/"

,-."#'#&/"

011"'#$/"

,
-
.
2"
,
3
45
"-
67
8
8
9
4"
.
9
59
65
3
4"
:
.
;
"

0
1
1
2"
0
<
9
8
1
=3
>
"1
3
4>

7
4?
";
6@
3
8
"

A"B,:"B349C"

D
E
43
F
G
E
<
F
5"
HI
J
<
CK
"

Fig. 5. OpenFlow extended to support UDAs

IV. THROUGHPUT EVALUATIONS

In Section II we reviewed some PC-based experiments to
show per packet overhead using different architectures. In this
section, we consider testing UDAs under higher loads to see
how it performs. Particularly, we extend the OpenFlow to
support such a feature and measure the overhead of UDAs.
We use the same UDAs as in experiments in Section II (i.e.,
Botminer Detector, Portscan Detector and P2P Plotter). The
experiment setup we use in all evaluations is as follows. We
use Xena packet generator to generate 10 Gbps traffic and send
it to FLARE [7] switch that hosts our UDAs. FLARE switch is
a programmable switch using Click environment and multicore
CPUs. It has a couple of SFP+ ports and provides a Linux and
Click environment for network research. For more details on
FLARE please refer to [7].

A. OpenFlow Plus UDAs

For OpenFlow experiments we use our software OpenFlow
implementation on FLARE. Since FLARE uses the Click
Modular router environment we implement all actions as Click
elements. In case of OpenFlow, we use the original open
source and publicly available OpenFlow implementation as a
static library linked against the OpenFlow Click element and

use library functions in the element and extend it to support
UDAs. Figure 5 illustrates the throughput of running UDAs
on OpenFlow using different packet sizes. We compared PSD
with OFF. We use one to five processor cores to show the
throughput is linearly increasing while we increase the number
of cores.

B. More Complex UDAs

Compared with portscan detector UDA, the botminer detec-
tor and P2P Plotter UDAs are more complex since they look for
specific aspects of the traffic and co-cluster the results to make
the decision. For both of them we use multiple Click elements
for implementation. Therefore, they have lower throughput
because of the overhead of using multiple elements. In case
of portscan detector we applied some optimizations to get the
results presented in Figure 5. Particularly, before optimization,
we used the CheckIPHeader Click element to set the IP address
annotation on the pact header to prevent segmentation fault on
our portscan element that was checking IP header on every
packet. So, we embedded the annotation functionality within
the portscan element. As the result, removing the overhead of
using additional element, we reduced the overhead of portscan
detector element from 0.000004 milliseconds to 0.000001
millisecond. In the same way, we can reduce the overhead
of botminer detector and P2P Plotter UDAs since they are
using the Counter and DelayUnqueue elements. Rather, we
use them for another experiment. That is, how the throughput
increases with the increase of the number of processor cores on
heavier UDAs. Table IV indicates that the throughput follows
a liner increase even up to 11 cores. As FLARE provides
more than 30 cores, we can keep experiencing the same linear
increase of performance which we exclude from the figure for
brevity. Also, we excluded the results from one to five cores
for briefness. We conclude that even for heavier tasks we can
consider UDAs using more number of processor cores.

C. Portscan Detector UDA Experiment on Attack Trace

Most of the experiments we discuss, focus on performance
of UDAs. For completeness we conducted a test on an attack
trace from [4] to show if the UDA we made really detects
attacks or not. Obviously, as we are not proposing a detection
algorithm, our measurement is not based on popular intrusion
detection metrics such as false negative and false positive.
Instead, we select a portion of the detection attack along with
the detection time. Figure 6 shows the detection time of a

TABLE IV. OVERHEAD OF HEAVY USER-DEFINED ACTIONS USING EXTENDED OPENFLOW

Processor cores 6 7 8 9 10 11

OpenFlow + UDAs (Gbps)
BotMiner Detector 2.3 2.9 3.1 3.5 3.9 4.3
P2P Plotter 2.4 2.8 3.2 3.6 4.0 4.4

D
e

te
c
ti
o

n
 T

im
e

 (
m

s
e

c
)

0

0.001

0.002

0.003

0.003

Detections

1 323

Fig. 6. Per attack detection time of Portscan Detector UDA on the attack
trace from [4]

random set of more than 300 detections the UDA fired on
the attack trace. The trace consists of about 2 million packets
attacking from three computers to three targets. The red line
shows the trend of detection time which illustrate reasonable
fluctuation we usually see in a software and we do not see an
unusual increase or decrease in detection times.

V. RELATED WORK

To our best knowledge, there is a limited attention to user-
defined actions in the literature. However, there are some works
that use labeling and tagging approaches as well as proposing
software solutions for SDN data plane. The only work (we
are aware of) which focuses on user-defined actions is [8] in
which authors propose a design of a chip as a replacement
for TCAM. They propose the Reconfigurable Match Tables
(RMT) model, a new RISC-inspired pipelined architecture
for switching chips, and identify the essential minimal set
of action primitives to specify how headers are processed in
hardware. RMT allows the forwarding plane to be changed in
the field without modifying hardware. As in OpenFlow, the
programmer can specify multiple match tables of arbitrary
width and depth, subject only to an overall resource limit,
with each table configurable for matching on arbitrary fields.
RMT allows the programmer to modify all header fields much
more comprehensively than in OpenFlow. The paper describes
the design of a 64x10 Gbps ports switch chip implementing
the RMT model and claims that flexible OpenFlow hardware
switch implementations are feasible at almost no additional
cost or power [8]. However, even though the design looks
promising, it is never implemented in the real world to prove
the claims. Such works shows the community is skeptical about
the capability of software controls. In this paper, we argue that
software controls are capable and sound for such purposes.

Another work that overlaps in problem domain with ours
is [9]. Authors introduce a tagging architecture in which
middleboxes export tags to provide the necessary casual con-

text (e.g., source hosts or internal cache/miss state). SDN
controllers can configure the tag generation and consumption
operations using their API. These operations help bindings
between packets and their origins as well as ensuring that
packets follow policy mandated paths. Middleboxes may use
tags to execute an action dynamically on the packet. This paper
is different from ours in two folds. First, it more focuses
on how actions are executed rather than ours in which we
consider how they are defined. Second, it discusses actions as
middleboxes in contrast to our target in which we study the
feasibility of deploying actions within the same box as the
switch similar to basic OpenFlow actions implemented using
TCAM. For completeness of this section we can mention other
related SDN technologies that can be combined with UDA. For
example TagFlow [10] which is a flow based switching system.
Similar to OpenFlow case we discussed in our experiments,
UDAs can be combined with TagFlow as well.

VI. CONCLUSION

In this paper, we propose UDAs as an extension to current
proposal from SDN community. We propose an architecture
and an extended version of OpenFlow to support such a func-
tionality in Click environment. We illustrated evaluations in
terms of throughput and ease of programability. We believe the
community should pay more attention to the programmability
of the data plane in order to have a better SDN.

REFERENCES

[1] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson,
“FRESCO: Modular composable security services for software-defined
networks,” in Proceedings of Network and Distributed Security Sympo-
sium, 2013.

[2] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp.
263–297, 2000.

[3] R. Furuhashi and A. Nakao, “Opentag: Tag-based network slicing for
wide-area coordinated in-network packet processing,” in IEEE ICC,
2011.

[4] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly
detection using software defined networking,” in Recent Advances in
Intrusion Detection, 2011, pp. 161–180.

[5] S. E. Schechter, J. Jung, and A. W. Berger, “Fast detection of scanning
worm infections,” in Recent Advances in Intrusion Detection, 2004, pp.
59–81.

[6] J. Twycross and M. M. Williamson, “Implementing and testing a virus
throttle,” in USENIX Security Symposium, vol. 285, 2003, p. 294.

[7] Akihiro Nakao, “FLARE: Open Deeply Programmable Switch,” in The
16th GENI Engineering Conference, 2012.

[8] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN,” in Pro-
ceedings of the ACM SIGCOMM, 2013, pp. 99–110.

[9] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul, “En-
forcing network-wide policies in the presence of dynamic middlebox
actions using FlowTags,” in USNIX NSDI, 2014.

[10] H. Farhady and A. Nakao, “TagFlow: Efficient Flow Classification in
SDN,” IEICE Transactions on Communication, 2014.

