
Software Defined Networking-based
Traffic Engineering for Data Center Networks
Yoonseon Han∗, Sin-seok Seo†, Jian Li∗, Jonghwan Hyun†, Jae-Hyoung Yoo†, James Won-Ki Hong†

∗Division of IT Convergence Engineering, POSTECH, Korea
{seon054, gunine}@postech.ac.kr

†Department of Computer Science and Engineering, POSTECH, Korea
{sesise, noraki, styoo, jwkhong}@postech.ac.kr

Abstract—Today’s Data Center Networks (DCNs) contain tens
of thousands of hosts with significant bandwidth requirements
as the needs for cloud computing, multimedia contents, and
big data analysis are increasing. However, the existing DCN
technologies accompany the following two problems. First, power
consumptions of a DCN is constant regardless of the utilization of
network resources. Second, due to a static routing scheme, a few
links in DCNs are experiencing congestions while other majority
links are being underutilized. To overcome these limitations of
the current DCNs, we propose a Software Defined Networking
(SDN)-based Traffic Engineering (TE), which consists of optimal
topology composition and traffic load balancing. We can reduce the
power consumptions of the DCN by turning off links and switches
that are not included in the optimal subset topology. To diminish
network congestions, the traffic load balancing distributes ever-
changing traffic demands over the found optimal subset topology.
Simulation results revealed that the proposed SDN-based TE
approach can reduce power consumptions of a DCN about 41%
and Maximum Link Utilization (MLU) about 60% on average
in comparison with a static routing scheme.

Index Terms—Data Center Network, Traffic Engineering, Soft-
ware Defined Networking

I. INTRODUCTION

A Data Center (DC) is a facility used to house computer
servers or hosts, and a Data Center Network (DCN) intercon-
nects these hosts using dedicated links and switches. Today’s
DCs may contain tens of thousands of hosts with significant
bandwidth requirements as the needs for cloud computing,
multimedia contents, and big data analysis are increasing [1].

Current DCNs are suffering from high operational expen-
ditures and frequent link congestions. First of all, the amount
of power consumed by a current DCN is constant regardless
of the usage ratio of network resources, while the network
utilization fluctuates depending on the time of day. The varying
traffic demands in the DCN can be satisfied by a subset
of the network resources most of the time [2]. As a result,
operating costs of the DCN are higher than what are actually
required. Second, due to a static flow path selection scheme,
a few specific links are frequently experiencing congestions
while other majority links are being under-utilized [3]. The
static ECMP [4], most widely used for core routers, does not
consider dynamic nature of DCN traffic characteristics and
this leads to a congestion of a specific link even in a situation

where almost every other links are underutilized.
Considering these problems of current DCN technologies,

this paper proposes a dynamic Traffic Engineering (TE) sys-
tem for a DCN using Software Defined Networking (SDN)
technologies. With SDN, a network administrator can vendor
independently control the entire network from a single logical
point (i.e. SDN controller) and this simplifies the network
design and operation.

TE is defined as “network engineering dealing with the issue
of performance evaluation and performance optimization of
operational IP networks” [5]. Typical objectives of TE include
balancing network load and minimizing network utilization.
A lot of studies have been proposed in the area of TE and
they can be classified into three categories according to rout-
ing enforcement mechanisms: MultiProtocol Label Switching
(MPLS)- [6], [7], Internet Protocol (IP)- [8], [9], or SDN-based
[2], [10]–[15]. Our proposed dynamic TE proposal for a DCN
takes the SDN-based approach. The benefits of SDN-based TE
approaches for a DCN are summarized as follows.

• It is relatively easier to obtain traffic and failure informa-
tion via a (logically) centralized SDN controller.

• Any flow format with arbitrary granularity can be ex-
ploited for TE

• It is easy to apply TE results to switches in a DCN by
modifying flow tables within the switches.

The proposed TE system consists of two procedures: op-
timal topology composition and traffic load balancing. To
reduce power consumptions of a DCN, the optimal topology
composition finds a subset DCN topology that can accom-
modate expected traffic demands at the moment. We can
reduce the power consumptions of the DCN by turning off
links and switches that are not included in the optimal subset
topology. To diminish network congestions, the traffic load
balancing distributes ever-changing traffic demands over the
found optimal subset topology. This traffic distribution makes
it possible to accommodate more traffic without causing
network congestions. To validate the proposed dynamic TE
system, we have implemented a prototype of the proposed TE
system for a DCN. The APIs provided by SDN controller were
used for applying outputs of the proposed TE system to the

Copyright IEICE - Asia-Pacific Network Operation and
Management Symposium (APNOMS) 2014

DCN. We also have evaluated performance of the proposed
TE system using simulations in terms of power saving ratio
and Maximum Link Utilization (MLU).

II. RELATED WORK

Many TE techniques for the traditional Internet have been
proposed including [4], [6]–[9], but TE for DCNs is still in a
preliminary stage [16]. In the meantime, the needs for large-
scale DCNs are increasing sharply as well as the needs for
efficient utilization of DCN resources. Recently, for that rea-
son, several studies about TE for DCNs have been published
including [2], [10]–[12], [15], [16]. We briefly introduce major
TE studies that are highly related with our proposed approach.

Hedera [11], a dynamic flow routing system for a multi-
stage switching fabric, utilizes a centralized approach to route
elephant flows exceeding 10 percent of the host Network
Interface Card (NIC) bandwidth while it utilizes static ECMP
for the rest short lived mice flows. The purpose of Hedera is
maximizing bisection bandwidth of a DCN by appropriately
placing the elephant flows among multiple alternative paths;
estimated flow demands of the elephant flows are used for
the placement. The main limitation of Hedera is that it let the
static ECMP routes the mice flows, which comprise more than
80% of the actual DCN traffic [3], [17].

Benson et al. proposed microTE [10], a centralized system
that adapts to traffic variations by leveraging the short term
predictability of the DCN traffic, to achieve fine grained TE.
It constantly monitors traffic variations, determines which Top-
of-Rack (ToR) pairs have predictable traffic, and assigns the
predicted traffic to the optimal path. Similar to Hedera, the
remaining unpredictable traffic is then routed using weighted
ECMP, where the weights reflect the available capacity after
the predictable traffic has been assigned. The major shortcom-
ings of microTE is twofold: a) it requires host modifications
to collect fine-grained traffic data and b) it lacks of scalability
due to its extremely short execution cycle

Penalizing Exponential Flow-spliTting (PEFT) was pro-
posed by Xu et al. [18] to achieve optimal TE for wide-
area ISP networks. Switches running PEFT make forwarding
and traffic splitting decisions locally and independently with
each other. In addition, packets, even in a same flow, can be
forwarded through a set of unequal cost paths by exponentially
penalized higher cost paths. Later, Tso et al. [16] modified the
PEFT for DCN TE as a reactive online version to cope with
dynamic and unpredictable nature of DCN traffic. However,
PEFT imposes heavy load on switches because each switch in
PEFT has to measure traffic volume incoming to and outgoing
from its ports and it has to calculate optimal routing paths
using the measured traffic data. Another limitation of PEFT
is that routing decisions of switches are not global optimal
solutions. Finally, PEFT delivers packets in the same flow
through a set of unequal cost paths by splitting them and this
causes a packet reordering problem.

ElasticTree [2] is a centralized system for dynamically
adapting the energy consumption of a DCN by turning off the
links and switches that do not essentially necessary to meet

Traffic Information

SDN Controller

Data Center Network

Traffic Engineering Manager

Switch & Link On/Off,
Flow Table Update

Control Data Plane
Interface

Fig. 1. Traffic engineering system architecture.

the varying traffic demands at the time. The fact that traffic
can be satisfied by a subset of the entire network links and
switches most of the time makes ElasticTree feasible. To find
the minimum subset topology, i.e. essential links and switches,
ElasticTree proposed three algorithms with different optimality
and scalability: Linear Programming (LP)-based formal model,
greedy bin packing heuristic, and topology-aware heuristic.
The main problem of ElasticTree is that its flow allocation
algorithms probably cause severe link congestions because
they allocate flows to links while maximizing the utilization
of link capacity.

III. TRAFFIC ENGINEERING FOR DCNS

In this section, we present the proposed dynamic TE system
for DCNs in detail. First, we explain the overall system
architecture of the proposed TE system. Thereafter, detailed
algorithms for optimal topology composition and traffic load
balancing are described.

A. Traffic Engineering System Architecture

Fig. 1 shows an overall architecture of the proposed dy-
namic TE system that has three components: a Data Center
Network (DCN), an SDN Controller, and a TE Manager. The
DCN, which contains many servers and SDN switches, is a tar-
get network of our TE system. The SDN switches in the DCN
report their traffic and failure status to the SDN controller
through the control data plane interface (e.g., OpenFlow).
The SDN controller aggregates and summarizes the collected
information. The TE manager takes the summarized traffic
and failure information to dynamically make an appropriate
TE decision at the time. The SDN controller also changes
switching behavior of SDN switches by updating their flow
tables, and turns on/off switches and links in the DCN to apply
the TE decision that minimizes power consumptions and link
congestions.

The TE manager, a core component of our dynamic TE
system, periodically takes traffic and failure information from
the SDN controller, makes a TE decision using the informa-
tion, and notifies the decision results to the SDN controller.

Traffic Engineering Manager

Switch & Link On/Off Flow Table Update

Optimal Topology
Composition

Traffic
Matrix

Traffic
Load Balancing

Switch & Link On/Off Status

Network Topology and
Link Capacity

Long-term Cycle
(~hours)

Short-term Cycle
(~minutes)

Fig. 2. Traffic engineering manager.

The TE manager consists of two major procedures: optimal
topology composition and traffic load balancing (see Figure 2).
Optimal topology composition periodically finds a minimum
subset of links and switches that can accommodate hourly
estimated traffic demands at the moment within the whole
DCN topology. Traffic load balancing periodically distributes
ever-changing traffic demands over the found optimal topology
to minimize Maximum Link Utilization (MLU). Note that
traffic load balancing is repeatedly executed in the time
scale of minutes whereas the optimal topology composition
is executed in the time scale of hours.

B. Optimal Topology Composition

The traffic demands in the DCN varies depending on the
time. However, power consumption of the DCN are constant at
higher lever than what are actually required. To reduce power
consumption of a DCN, Heller et al. [2] proposed ElasticTree.
Their proposal contains both an MCF-based formal model
using linear programming, and a greedy bin packing heuristic
which quickly produces a near-optimal solution. MCF (Multi
Commodity Flow) problem is a network flow problem with
multiple flow demands between different source and target
nodes. In this paper, we propose a quicker algorithm to find
the minimum subset topology using path-based MCF, which
improves the link-based MCF ElasticTree. We also propose
a refined greedy bin packing heuristic for minimum subset
topology composition corresponding to the path-based MCF.

1) Subset Topology Composition using Path-based MCF:
To reduce the computation time, we propose a minimum subset
topology composition model based on path-based MCF, which
requires significantly less decision variables and constraints
than the MCF-based model [2]. The minimum subset topol-
ogy composition model using path-based MCF is defined as
follows.
• Input

– Network topology: G(V,E)
– Traffic matrix: T

– Link capacity: ∀(u, v) ∈ E, c(u, v)
– Set of considered paths of flows:
∀i, PTi = {pi,0, · · · , pi,j , · · · , pi,l}

– Subset of considered paths that contain a link (u, v):
∀i, P (u,v)

Ti
⊆ PTi

– Set of all switches: S ⊂ V
– Set of nodes connected to a switch: ∀u ∈ S, Vu

– Power cost of links: ∀(u, v) ∈ E, a(u, v)
– Power cost of switches: ∀u ∈ S, b(u)

• Decision Variables
– Flows along each path: ∀i,∀p ∈ PTi

, fi(p)
– Binary decision variable indicating whether a link

(u, v) is powered on: ∀(u, v) ∈ E,Xu,v

– Binary decision variable indicating whether a switch
u is powered on: ∀u ∈ S, Yu

• Objective
Minimize

∑
(u,v)∈E Xu,v × a(u, v) +

∑
u∈S Yu × b(u)

• Constraints
– Capacity limitation:

s∀(u, v) ∈ E,
∑k

i=1

∑
p∈P (u,v)

Ti

fi(p) ≤ Xu,v ×
c(u, v)

– Demand satisfaction: ∀i,
∑

p∈PTi
fi(p) = di

– Bidirectional link power: ∀(u, v) ∈ E,Xu,v = Xv,u

– Switch-to-link correlation:
∀u ∈ S, ∀w ∈ Vu, Xu,w = Xw,u ≤ Yu

– Link-to-switch correlation:
∀u ∈ S, Yu ≤

∑
w∈Vu

Xw,u =
∑

w∈Vu
Xu,w

The decision variables fi(p) represent allocation of flow
Ti to each path p. In order to allocate flows in T to the
network topology G(V,E), path-based MCF model finds val-
ues of fi(p) that satisfy both capacity limitation and demand
satisfaction constraints. The binary decision variables Xu,v or
Yu indicate whether a link (u, v) or a switch u is powered
on respectively. With these binary decision variables, we can
define an objective function that represents minimization of
power costs of a DCN.

The capacity limitation constraints force the sum of flows
along each link (u, v) does not exceed the link capacity c(u, v)
and ensure flows are allocated to only those links that are
powered on. The demand satisfaction constraints ensure each
source si or target ti in a flow Ti sends or receives an equal
amount of traffic to its demand di. The bidirectional link
power constraints make the power statuses of both a link
(u, v) and (v, u) consistent. The switch-to-link correlation
constraints ensure that when a switch u is powered off, all
links connected to this switch are also powered off. Similarly,
the link-to-switch correlation constraints ensure that when all
links connected to a switch u are powered off, the switch is
also powered off.

2) Subset Topology Composition using Heuristic: We can
find a subset topology using a heuristic within a short period
of time even for a large scale DCN. While this heuristic
does not guarantee a solution within a bound of optimal, it
produces a high-quality subset topology in practice. In brief,
this heuristic, which is called greedy bin packing [2], evaluates

Algorithm 1: Heuristic for Subset Topology Composition
Input : T (Traffic Matrix), DCN Topology, Link Capacity
Output: On/Off Status of switches and links

1: for all flow f in T do
2: listp ← possible paths from fsrc to fdst
3: sort listp by position from left to right
4: for all path p in listp do
5: if All links in p satisfy capavail > fdmd then
6: Assign f to p
7: for all link l in p do
8: capavail[l] = capavail[l]− fdmd

9: end for
10: break
11: end if
12: end for
13: end for
14: for all link l in DCN do
15: if capavail[l] < capmax[l] then
16: Set l and connected switches to turn on
17: end if
18: end for

possible paths between a source and a target of each flow,
and allocates the flow to the leftmost or the rightmost path
with sufficient capacity. Similar to the linear programming-
based formal models, this approach requires knowledge of
the traffic matrix in advance, but it can compute the solution
incrementally; we can process the traffic matrix on-line with
this heuristic.

Algorithm 1 describes the heuristic for subset topology
composition in detail. It takes a traffic matrix T , a DCN
topology, and a capacity of each link as input. The traffic
matrix T is a set of flows specified by (source, target, demand)
tuples. The output of this algorithm is on/off status of switches
and links that constitute the entire physical DCN topology.
By using only turned on switches and links specified by this
algorithm, we can construct the near-minimum subset topology
that satisfies all the traffic demands in T . This subset topology
composition algorithm consists of two parts: 1) allocation of
each flows in T to the left most path with sufficient capacity
(line 1–13) and 2) determination of switches and links to be
turned on (line 14–18).

3) Extra Switch and Link Addition: The subset topology
composition algorithms try to find the subset topology with the
minimum number of links and switches. Thus, the probability
that these subset links would experience traffic congestions
is very high. By adding extra switches and links on the
found minimum topology, the link congestion probability
could be diminished. A procedure for re-distributing the ever-
changing traffic demands over the augmented optimal topology
is necessary to fully utilize the reinforced extra links and to
reduce possible link congestions.

C. Traffic Load Balancing

A few specific links in DCN are experiencing congestions,
especially the links connected to core switches, while other
majority links are being underutilized due to a static routing
path selection scheme [3]. We propose a dynamic traffic load

balancing algorithms to minimize possible link congestions
by distributing traffic demands over the entire DCN topology
or over the subset topology found by the optimal topology
composition algorithms. We propose two different traffic load
balancing algorithms for predicted traffic demands using path-
based MCF and a heuristic. These algorithms periodically
distribute the ever-changing estimated traffic demands, which
are predicted in the form of traffic matrix and in the time scale
of a few minutes or seconds, over the found optimal topology.
This makes it possible to accommodate more traffic demands
without installing extra network resources.

1) Traffic Load Balancing using Path-based MCF: We can
allocate flows in a traffic matrix T to network resources using
Path-based MCF while distributing traffic load to minimize
MLU. It is required to define additional decision variable
m, which represents MLU, and to modify capacity limitation
constraints with this variable m. The predicted traffic load
balancing model using path-based MCF is defined as follows.

The modified capacity limitation constraints ensure the sum
of flows along each link (u, v) does not exceed the adjusted
link capacity m×c(u, v). This predicted traffic load balancing
model exploits the modified capacity limitation constraints to
minimize the MLU of all the links in the network by setting
the objective function to minimize m.
• Input

– Network topology: G(V,E)
– Traffic matrix: T
– Link capacity: ∀(u, v) ∈ E, c(u, v)
– Set of considered paths of flows:
∀i, PTi = {pi,0, · · · , pi,j , · · · , pi,l}

– Subset of considered paths that contain a link (u, v):
∀i, P (u,v)

Ti
⊆ PTi

• Decision Variables
– Maximum Link Utilization (MLU): m
– Flows along each path: ∀i,∀p ∈ PTi

, fi(p)

• Objective: Minimize m
• Constraints

– Capacity limitation:
∀(u, v) ∈ E,

∑k
i=1

∑
p∈P (u,v)

Ti

fi(p) ≤ m× c(u, v)

– Demand satisfaction: ∀i,
∑

p∈PTi
fi(p) = di

2) Traffic Load Balancing using Heuristic: We can allocate
flows to minimize MLU using a heuristic within a short period
of time even for a large scale DCN. While this heuristic
does not guarantee a solution within a bound of optimal, it
produces a high-quality traffic allocation that minimizes MLU
in practice. Algorithm 2 describes the heuristic for predicted
traffic load balancing in detail. It takes a traffic matrix T , a
DCN topology, and a capacity of each link as input.

The traffic matrix T is a set of flows specified by (source,
target, demand) tuples. The output of this algorithm is allo-
cation, which minimizes MLU, of flows in T to paths. This
heuristic sorts T in descending order of traffic demands to
allocate large flows first (line 1). Then, for each flow in T ,
it evaluates possible paths from a source fsrc to a target fdst

Algorithm 2: Heuristic for Traffic Load Balancing
Input : T (Traffic Matrix), DCN Topology, Link Capacity
Output: Minimizing MLU path allocation of flows in T

1: sort T in descending order of demands
2: for all flow f in T do
3: listp ← possible paths from fsrc to fdst
4: listMLU ← null
5: for all path p in listp do
6: listMLU [p] = MLU of p
7: end for
8: psel = listp[index of minimum listMLU]
9: Assign f to psel

10: for all link l in psel do
11: capavail[l] = capavail[l]− fdmd

12: end for
13: end for

TABLE I
TRAFFIC MATRIX DATA SETS.

Category Set 1 Set 2 Set 3

k of Fat tree 4–36 32 32

of Hosts 16–11,664 8,192 8,192

of Flows per Host 2 1–5 2

Intra-Rack Traffic % 50 50 10–90

Traffic Demands 10–20% of a maximum link capacity

(line 3). Among these considered paths, this heuristic allocates
the flow f to a path psel with the minimum MLU (line 4–9).
Finally, it decreases the available capacities capavail of links
consisting the selected path psel as many as the amount of
traffic demand fdmd of the flow f (line 10–12).

IV. IMPLEMENTATION AND EVALUATION

We employed Mininet [19] network emulation tool for
constructing a virtual DCN topology. Each switch in the
virtual topology emulated by Mininet is a virtual instance of
Open vSwitch [20]. To generate traffic among hosts, we used
iperf [21], which is a network testing tool that can create
TCP or UDP data streams. It also provides measurement logs
of the data streams. we have chosen to use Floodlight [22], a
Java-based OpenFlow controller, as a centralized manager of
the DCN. It updates flow tables of switches using OpenFlow
protocol to apply TE results. The traffic engineering manager,
a core component of our TE system, executes the proposed
TE mechanism, and notifies the results to the SDN controller
using Floodlight APIs. We implemented prototype of this TE
manager using a Python 2.7.4 programming language.

We used three different data sets of traffic matrix sum-
marized in Table I for experiments. In Table I, k means the
Fat-Tree topology is organized using only k-port commodity
switches. Each flow in these three traffic matrices has a
demand that was randomly selected in between 10–20% of
a maximum link capacity in common. The data set 1 were
generated by increasing the number of hosts to examine influ-
ences of the size of a DCN. The data set 2 was generated by

increasing the number of flows per host to identify influences
of a traffic load in a DCN. Lastly, the data set 3 was generated
by changing the intra-rack traffic ratio. Moreover, the data sets
contain unpredicted traffic in common; the unpredicted traffic
was assumed to contain 5 flows per host with traffic demands
that were randomly selected in between 1 to 5% of a maximum
link capacity.

Fig. 3 shows power consumption ratio when the proposed
optimal topology composition approach is applied. We as-
sumed that the power costs of each switch and link were 150
and 1, respectively. We calculated power saving ratios after
adding extra i aggregate switches per pod and j core switches
to the found optimal subset topology (represented as A(i,
j)). The result shows that our proposed mechanism reduces
around 41% energy consumption with minimum topology
composition (35% for A(1, k/8), 31% for A(2, 2k/8), and
27% for A(3, 3k/8)). We can identify four trends of the power
saving ratio. 1) the power saving ratio was increased as the
size of the DCN grows. 2) the saving ratio was decreased
as the number of flows per host increases. 3) the ratio was
increased as the intra-rack traffic ratio increases. 4) the gap of
the power saving ratio between an optimal and an augmented
topology was decreased as the size of the DCN grows.

Fig. 4 shows Maximum Link Utilization (MLU). Note that
the static routing scheme of Fat-Tree cannot be applied on
an optimal subset topology because it was designed to make
use of an entire Fat-Tree topology to distribute traffic load.
We also plotted an average Link Utilization (LU) of aggregate
and core links in the Figure as a base line. We can identify
that the MLU of the static routing scheme was increased
1) as the size of the DCN grows, 2) as the number of
flows per host increases, and 3) as the intra-rack traffic ratio
decreases. In other words, our traffic load balancing schemes
significantly reduced the MLU in comparison with the static
scheme (maximum 60%). Moreover, we can identify that our
traffic load balancing schemes stably maintained the MLUs as
low as possible against the average LUs, whereas the static
scheme failed to address.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a dynamic TE system
for a DCN in detail. We have explained the overall system
architecture of the TE system, which has three components:
a DCN, an SDN controller, and a TE manager. Thereafter,
optimal topology composition and traffic load balancing for
the TE manager are described using both linear programming
and a heuristic approaches. We have implemented a prototype
of the proposed TE system for a DCN using various tools.
The evaluation results in simulations shows that the proposed
method reduces 41% power consumption with minimal topol-
ogy composition, and 60% lower Maximum Link Utilization
(MLU) compared to a static routing scheme.

As future work, we will further improve those TM estima-
tion techniques considering characteristics of a DCN. Possible
research directions to that include a) exploiting data obtained
from end hosts as well as data from switches for estimating

 0

 10

 20

 30

 40

 50

 60

 0 2000 4000 6000 8000 10000 12000

En
er

gy
 S

av
in

g
R

at
io

 (%
)

Number of hosts

Minimum
A(1, k/8)

A(2, 2k/8)
A2(3, 3k/8)

(a) TM Set 1

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5

En
er

gy
 S

av
in

g
R

at
io

 (%
)

Number of Flows per Host

Minimum
A(1, k/8)

A(2, 2k/8)
A2(3, 3k/8)

(b) TM Set 2

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90

En
er

gy
 S

av
in

g
R

at
io

 (%
)

Intra-Rack Traffic Ratio (%)

Minimum
A(1, k/8)

A(2, 2k/8)
A2(3, 3k/8)

(c) TM Set 3

Fig. 3. Power saving ratios. (k = a parameter to construct k-ary Fat-Tree topology)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2000 4000 6000 8000 10000 12000

Li
nk

 U
til

iz
at

io
n

(%
)

Number of hosts

Static
Heuristic

LP

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2000 4000 6000 8000 10000 12000

Li
nk

 U
til

iz
at

io
n

(%
)

Number of hosts

(a) TM Set 1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5

Li
nk

 U
til

iz
at

io
n

(%
)

Number of Flows per Host

Static
Heuristic

LP

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5

Li
nk

 U
til

iz
at

io
n

(%
)

Number of Flows per Host

(b) TM Set 2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 20 30 40 50 60 70 80 90

Li
nk

 U
til

iz
at

io
n

(%
)

Intra-Rack Traffic Ratio (%)

Static
Heuristic

LP

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 20 30 40 50 60 70 80 90

Li
nk

 U
til

iz
at

io
n

(%
)

Intra-Rack Traffic Ratio (%)

(c) TM Set 3

Fig. 4. Maximum link utilization comparisons.

TM and b) extending TE algorithm by utilizing flow-level
characteristics of DCN.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. ACM SIGCOMM ’08, Seattle,
USA, Aug. 17–22, 2008, pp. 63–74.

[2] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “ElasticTree: Saving energy in data
center networks,” in Proc. 7th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’10), San Jose, USA, Apr.
28–30, 2010, pp. 1–16.

[3] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. ACM Internet Measurement
Conference 2010 (IMC ’10), Melbourne, Australia, Nov. 1–3, 2010, pp.
267–280.

[4] C. Hopps, “Analysis of an Equal-Cost Multi-Path algorithm,” RFC 2992,
Nov. 2000.

[5] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao, “Overview
and principles of internet traffic engineering,” RFC 3272, May 2002.

[6] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. MacManus,
“Requirements for traffic engineering over MPLS,” RFC 2702, Sep.
1999.

[7] D. Awduche, “MPLS and traffic engineering in ip networks,” IEEE
Communications Magazine, vol. 37, no. 12, pp. 42–47, 1999.

[8] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in Proc. 19th IEEE International Conference on Com-
puter Communications (INFOCOM ’00), Tel Aviv, Israel, Mar. 26–30,
2000, pp. 519–528.

[9] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional
IP routing protocols,” IEEE Communications Magazine, vol. 40, no. 10,
pp. 118–124, 2002.

[10] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine
grained traffic engineering for data centers,” in Proc. 7th International
Conference on emerging Networking EXperiments and Technologies
(CoNEXT ’11), Tokyo, Japan, Dec. 6–9, 2011, pp. 1–12.

[11] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
7th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI ’10), San Jose, USA, Apr. 28–30, 2010, pp. 1–15.

[12] Y. Li and D. Pan, “OpenFlow based load balancing for Fat-Tree networks
with multipath support,” in Proc. 12th IEEE International Conference
on Communications (ICC ’13), Budapest, Hungary, Jun. 9–13, 2013, pp.
1–5.

[13] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, and J. Zolla, “B4: Expe-
rience with a globally-deployed software defined wan,” in Proc. ACM
SIGCOMM ’13, Hong Kong, China, Aug. 12–16, 2013, pp. 3–14.

[14] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in Proc. ACM SIGCOMM ’13, Hong Kong, China, Aug. 12–16,
2013, pp. 15–26.

[15] H. Long, Y. Shen, M. Guo, and F. Tang, “LABERIO: Dynamic load-
balanced routing in OpenFlow-enabled networks,” in Proc. 27th IEEE
International Conference on Advanced Information Networking and
Applications (AINA ’13), Barcelona, Spain, Mar. 25–28, 2013, pp. 291–
297.

[16] F. P. Tso and D. P. Pezaros, “Improving data center network utilization
using near-optimal traffic engineering,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 6, pp. 1139–1148, Jun. 2013.

[17] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of datacenter traffic: Measurement & analysis,” in Proc. ACM
Internet Measurement Conference 2009 (IMC ’09), Chicago, USA, Nov.
4–6, 2009, pp. 202–208.

[18] D. Xu, M. Chiang, and J. Rexford, “Link-state routing with hop-by-
hop forwarding can achieve optimal traffic engineering,” IEEE/ACM
Transactions on Networking, vol. 19, no. 6, pp. 1717–1730, Dec. 2011.

[19] “Mininet: An instant virtual network on your laptop (or other pc),”
http://mininet.org/, [Online; accessed Nov. 27, 2013].

[20] “Open vSwitch: An open virtual switch,” http://openvswitch.org/, [On-
line; accessed Dec. 2, 2013].

[21] “Iperf,” http://en.wikipedia.org/wiki/Iperf, [Online; accessed Dec. 2,
2013].

[22] “Floodlight OpenFlow controller,” http://www.projectfloodlight.org/floodlight/,
[Online; accessed Oct. 23, 2013].

