
Implementation of A Distributed Web Community
Crawler

Seonyoung Park, Youngseok Lee
Chungnam National University

Daejeon, Republic of Korea
{siraman, lee}@cnu.ac.kr

Abstract—A web community is an important space for online
users to exchange information, ideas and thoughts. Due to
collective intelligence of the web communities, marketing and
advertisement activities have been highly focused on these sites.
While articles in the web communities are open to the public, they
cannot be easily collected and analyzed, because they are written
in natural languages and their formats are diverse. Though many
web crawlers are avaialble, they are not good at gathering web
documents. First, the URLs of web articles are frequently changed
and redundant, which will make the crawling job difficult.
Second, the amount of articles is significantly large that the
crawler should be designed in a scalable manner. Therefore, we
propose a distributed web crawler optimized for collecting articles
from popular communities. From the experiemnts we showed that
our implementation achieves high throughput compared with the
open-source crawler, Nutch.

Keywords—Distributed web crawler, community, web forum.

I. INTRODUCTION

Web or online communities are important cyber-space
where people share information about various topics with
others. For instance, Ubuntu forum [1] is a place where people
can ask and get information of Ubuntu Linux. Apple forum [2],
like Ubuntu forum, is a web site where people can exchange
reviews, opinions, and tips regarding various apple products
such as iPhone, iPad, or Macbook. Joonggonara [3] is one
of the most huge online second-hand product community in
Korea.

Due to the rich information and the large population of
online communities, many studies have been performed to
analyze the opinion trends of communities, Before the analysis
process of the web communities, we need to gather docu-
ments or comments from the web sites. Though well-known
web crawlers are being used for this purpose, universal web
crawlers do not fit to collect articles from the web communities
[4], [5] because of the following reasons. First, URL flipping
often occurs in online community web sites. Second, universal
web crawlers will collect plenty of duplicated or meaningless
web pages. In order to address this problem, J. Jiang et al.
[5] developed a crawling method called FOCUS which crawls
only meaningful posts, discovers and generates the url patterns.

While the web crawler studies [4], [5], [6] encompass
several methodologies for crawling documents from web com-
munities, their web crawlers run on a single server and cannot
address the scalability issue against the rapid growth of web
communities, In order to solve this problem, a few distributed
web crawlers have been developed and released. However,

there are only few open source projects such as Apache Nutch
[7] which is based on the Hadoop framework. Nevertheless,
Apache Nutch is not suitable for collecting information from
onlne communities because it gathers duplicated or mean-
ingless web pages. Furthermore, it is not easy to extend or
customize Nutch for the web community crawler, because
Apache Nutch is not well documented.

In this paper, we present implementation and evaluation
results of the distributed web crawler based on ZooKeeper to
collect information from online communities. Among several
candidates such as RabbitMQ [8], ZeroMQ [9], and Open-
MPI [10] for the distributed applications, we have chosen
ZooKeeper, because it provides a distributed coordination
framework. From the experiments on the Linux clusters, we
have shown that our implementation outperforms Nutch in the
aspect of gathering performance as well as accuracy.

II. RELATED WORK

A. Web crawler for online communities

Web crawlers are programs that automatically visit and
download web pages, following hyperlinks in web pages [11].
A Web crawler starts with a list of URLs to hit, called
the seeds. As the crawler traverses these URLs, it identifies
all the hyperlinks in the page and adds them to the list of
URLs to visit, called the crawl frontier. The frontier could be
implemented by FIFO queue or priority queue, and supports
deduplication. There are many open source web crawlers
including HTTrack [12], Heritrix [13], and Scrapy. HTTrack
is a free and open source Web crawler and allows users to
mirror web sites from the Internet. Heritrix is a web crawler
designed for web archiving developed by Internet Archive and
free software license written in Java. Scrapy is a open source
web crawling framework for web scraping. and is written in
Python. However, in general, universal web crawlers cannot
gather the documents from web communities, because of URL
flippings and dulications of the web community.

B. Distributed web crawler

While studies [4], [5], [6] on the web crawler have pro-
posed several methodologies for crawling online communities,
none of these studies have addressed the scalability that a
crawler may face against the rapid growth of online commu-
nities.

There are two methods to implement distributed web
crawlers [15]: dynamic assignment and static assignment. In

Copyright IEICE - Asia-Pacific Network Operation and 
Management Symposium (APNOMS) 2014



a dynamic assignement implementation of distributed web
crawlers, a central server assigns new URLs to different
crawlers dynamically. This allows the central server to balance
the load of each crawler. There is a fixed rule to assign the
new URLs to the crawlers. In static assignment, a hashing
function can be used to transform URLs or complete web
site names into a number that corresponds to the index of
the corresponding crawling process.

Nutch is one of the most popular distributed web crawlers
written in Java and released in open source. Nutch can run
on multiple machines while running in a Hadoop cluster. In
Fig. 1, we describe how Apache Nutch works. First, Apache
Nutch creates a new crawlDB. and injects root URLs into the
CrawlDB from seed urls. Then, Apache Nutch generates a
fetchlist from the crawlDB in a new segment, fetches contents
from URLs in the fetchlist, and updates the WebDB with links
from fetched pages. Apache Nutch repeats this processes until
the required depth is reached.

C. ZooKeeper

ZooKeeper [16] is the Apache open source project that
provides distributed configuration service, synchronization
service, and naming registry for large distributed systems.
ZooKeeper includes a file system-like API comprised of a
small set of calls that enables applications to implement their
own primitives. ZooKeeper makes use of small nodes, called
Znodes, to create and register master and workers, or to man-
age distributed lock. Futhermore, Znodes representing a master
will maintain information on managing worker, and Znodes
for workers will retain information on the job progress. In our
work, we resort ZooKeeper for the distributed cooardination
framework to implement the distributed web crawler.

III. DESIGN AND IMPLEMENTATION OF DISTRIBUTED
WEB CRAWLER

A. Overview

At first, we considered Nutch as the candidate by extending
its functions on the distributed platform, but we excluded
Nutch because it requires a lot of resources based on Hadoop
and it is not easy to address diverse requirements. Then, we
decided to develop our own distributed web crawler for web
forums instead of extending Nutch.

The overall architecture of our system is illustrated in Fig.
2. A master and multiple workers run on a Linux cluster. A
master node monitors and manages workers and their tasks.
Workers consists of three modules LoginModule, HTTP Client
Module and Main Module, and they run independently without
any coordination among other crawlers. Crawled web pages are
stored in the local storage.

Figure 3 illustrates how distributed web crawlers work.
For the sake of simplicity of our implementation, we assign a
single crawling task to one worker. For instance, we need four
workers when collecting documents from four web boards of
Apple forum. If the number of worker nodes is smaller than
that of crawling tasks, then worker nodes that have completed
the crawling task will be assigned to the next crawling task.

Fig. 3. Distributing crawling tasks to workers

B. Internal view of workers

We now explain the internal view of the workers how dis-
tributed web community crawler works. The implementation
of the distributed community crawler comprises three modules:
login, HTTP client and crawler core. The login module is
responsible for logging into online communities when a valid
account is needed before crawling starts. The HTTP client
module sends HTTP request messages and processes HTTP
response messages. The crawler core module manages whole
process of the distributed community crawler.

We implemented the login module using Selenium Web-
Driver [18] which allows users to write web interface tests
to drive a browser. Selenium WebDriver is a tool for writing
automated tests of web sites. It aims to mimic the behaviour
of a real user, and interacts with the HTML of the application.
However, web browsers are slower than other HTTP libraries
since web browsers must render web pages. Consequently,
since crawling web pages using the webdriver makes progress
much slower than using a simple HTTP library, we have
developed the login module and the HTTP client module,
respectively.

The HTTP client module is responsible for accessing most
web pages except that you need login. We developed the HTTP
client module using Apache HttpClient [19] which is a simple
HTTP library in java. It includes basic codes for handling
errors such as timeout. In particular, we set the web browsing
delay of the HTTP client module for the short time, because
many web servers block web crawlers to avoide the overload
by accessing web pages quickly.

Figure 4 illustrates how the main module works. Initially,
the main module checks whether login is needed or not, and
it requests the login module to login if necessary. Then, the
login module returns a cookie to the main module. The main
module forwards the cookie to the HTTP client to generate
HTTP request messages. A seed set of users is inserted into
the frontier. Then at each step, the first entry of the frontier is
popped up and all URLs will be crawled. The main module
uses a frontier which is a queue data structure to store the list
of URLs that had been seen but not crawled. Once all of the
URLs are crawled, the URL is marked as visited, and it is also
stored in a separate queue in the frontier. Crawled web pages
are stored in the local storage.



Fig. 1. Crawling process of Apache Nutch

Fig. 2. Overview of distributed web crawler

C. Fault tolerance of web crawling

In Fig. 5, we describe the fault tolerance function in our
implemenation that provides the process or node recovery
process of the web crawler.

There are three cases that may experience failures in the
distributed web community crawler. The first is when a process
is stopped by accident. In this situation, the recovery process
follows the flow of the recovery procedure as shown in Fig. 5
Intermediate progress status of each worker is updated to its



Fig. 4. How the main module works

Znode every 10 seconds so that other worker can replace its
job under accidental errors. The second one is that the master
node fails because of errors such as connection loss. Creating
”/master” Znode is only one way to become a new master
because a master does not maintain any information about
workers and tasks. The last case is the failure that occurs in
ZooKeeper ensemble itself. If a ZooKeeper node fails, workers
connected to the ZooKeeper node does not play its role. In this
case, ZooKeeper tries to re-establish a new connection to other
ZooKeeper nodes.

IV. PERFORMANCE EVALUATION

A. Environment

In order to carry out performance evaluation of our dis-
tributed web crawler, we selected three Korean web com-
munities and three international web communities. The basic
information of the candidate web communities are explained
in Table I. We compared the performance of distributed web
crawlers for online communities with that of single-process
web crawler HTTrack which is one of the most popular web
crawler and provides high performance [20].

We built a Linux cluster consisting of five machines.
Each node is equipped with Intel(R) Celeron(R) CPU 743 @
1.30GHz with 4GB of main memory. The host machine runs
Ubuntu Linux 12.04.2 with kernel 3.2.0-4 in 64-bit mode. The
source code is compiled and launched using the Oracle JDK
1.8.0-5.

Fig. 5. Recovery of a crawling task

TABLE I. TARGET WEB COMMUNITIES. ALEXA RANK IS FROM THE
SITE HTTP://WWW.ALEXA.COM

Name URL Alexa rank
Ppomppu http://www.ppomppu.co.kr 4455
Ilbe http://www.ilbe.com 3306
Todayhumor http://www.todayhumor.co.kr 4685
Gaia online http://www.gaiaonline.com/ 7392
4chan http://www.4chan.org/ 1046
Offtopic http://www.offtopic.com/ 64605

Our implementation and Nutch launch 18 crawling pro-
cesses concurrently. The maximum number of threads per each
task for Nutch is set to 20. For instance, the number of threads
in one node is 80, which executes four crawling processes. On
the other hand, in our implementation, one crawling process
has one thread. The number of threads for HTTrack is set to
be 10. Other setting is as follows: the number of Mappers per
each Hadoop node is 8, the number of Reduces is two, I/O
buffer size is 1024 KB, and HDFS block size is 128 MB.

B. Results

TABLE II. RESULTS OF WEB CRAWLING EXPERIMENTS

Apache Nutch HTTrack Our Implementation
Total 4626 11213 10342
Valid 3157 7893 10342
Duplicate 1344 1023 0
Uninformative 125 2297 0

Table. II summarizes the experimental results. “Total”
means the number of all the web pages that have been collected
during the experiment. “Duplicate” is the number of redundant
web pages. “Valid” is the number of web pages that have
been valid. “Uninformative” is the number of web pages
that are not meaningful. From the results, we confirm that
our implementation achieves high accuracy as well as high
throughput. Our implementation did not collect the duplicate
or redundant web pages, whereas Nutch gathered 1,344 pages
which is 30 % of 4,626 total collected documents. Similarly,
HTTrack has collected 1,023 duplicate web pages out of
11,213 total documents, which is 9 % of duplication. Thus,
Nutch and HTTrack have wasted the network bandwidth by



Fig. 6. Completion time of crawling articles of web communities

gathering duplicate web pages. Uninformative web documents
have been collected by Nutch and HTTrack. We can limit the
URLs by using CSS selector, which is important to avoid the
redundant or uninformative web page collection.

From Fig. 6, we can find that our implementation completes
the collection job fast. Nutch takes 2 hour and 30 minutes,
HTTrack takes 59 minutes, and our implementation takes 25
minutes. As Nutch is based on the MapReduce framework, it
is slower than others. HTTrack is slower than our implementa-
tion, because it does not provide the fast processing capability
with the distributed computing resources.

In Fig. 7, the traffic amount caused by web crawling is
compared. For the experiments Nutch collects 280 MB of web
pages, HTTrack collects 958 MB, and our implementation
collects 876 MB. Since Nutch has crawled a small number
of articles, its byte count is small. However, HTTrack and
our implementation show the large traffic volume. Still, our
implementation gets the smaller traffic volume than HTTrack
while maintaining the high accuracy.

From Fig. 8, our implementation also achieves high
throughput of 594 KB/s, which corresponds to 18.6 times of
Nutch and 2.1 times of HTTrack. Nutch gathers 32 KB of
web pages per second and HTTrack gathers 275 KB of web
pages per second. In the aspect of the web page throughput,
our implmentation collected 6.8 pages per second, while Nutch
get only 0.5 page per second. The reason of low throuhput of
Nutch is the MapReduce architecture, because a MapReduce
job requires a Java virtual machine and the long initialization
job process in the cluster. In the experiment, we observed that
it usually takes at least 10 seconds to run a simple MapReduce
job. In addition, Nutch does not distribute the load of the
web page collection process to multiple workers, and it often
utilizes the partial computing resources of the cluster. HTTrack
uses a single-process web crawling framework, which is not
enough to accommodate the overload of large web communi-
ties.

Fig. 7. The amount of traffic of crawling articles of online communities

V. CONCLUSION

In this paper, we have presented our own implementation
of the distributed web community crawler and its performance
evaluation results. We have designed the web crawler that can
run in the distributed manner, and we have added the login
and load balancing functions to the web crawler. Based on
ZooKeeper, we have built a distributed web crawler suitable
for the web community. The experiments show that our imple-
mentation achieves the high througput and the high accurarcy.

ACKNOWLEDGEMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology grant number (NRF-2013R1A1A2007326) and the
corresponding author is Youngseok Lee.

REFERENCES

[1] Ubuntu forum, http://ubuntuforums.org/
[2] Apple forum, https://discussions.apple.com/index.jspa
[3] Joonggonara, http://cafe.naver.com/joonggonara.cafe
[4] R. Cai, J.-M. Yang, W. Lai, Y. Wang, and L. Zhang, iRobot: an intelligent

crawler for web forums, in the Proceedings of the 17th international
conference on World Wide Web, Beijing, China, 2008.

[5] J. Jiang, N. Yu, and C.-Y. Lin, FoCUS: learning to crawl web forums,
in the Proceedings of the 21st international conference companion on
World Wide Web, Lyon, France, 2012.

[6] J.-M. Yang, R. Cai, C. Wang, H. Huang, L. Zhang, and W.-Y. Ma,
Incorporating site-level knowledge for incremental crawling of web
forums: a list-wise strategy, in the Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data
mining, Paris, France, 2009.

[7] Apache Nutch, https://nutch.apache.org/
[8] RabbitMQ, https://www.rabbitmq.com/
[9] ZeroMQ, http://zeromq.org/
[10] Open-MPI, http://www.open-mpi.org/
[11] B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage

Data, Springer, 2007.
[12] HTTrack, http://www.httrack.com/
[13] Heritrix, https://webarchive.jira.com/wiki/display/Heritrix/Heritrix



Fig. 8. Throughput and valid page count per second

[14] Scrapy, http://scrapy.org/
[15] J. Cho and H. Garcia-Molina, Parallel crawlers, in the Proceedings of

the 11th international conference on World Wide Web, Honolulu, Hawaii,
USA, 2002.

[16] Apache ZooKeeper, http://zookeeper.apache.org/
[17] F. Junqueira and B. Reed, ZooKeeper: Distributed Process Coordination:

O’Reilly Media, 2013.
[18] Selenium WebDriver, http://docs.seleniumhq.org/docs/03 webdriver.jsp
[19] Apache HttpClient, http://hc.apache.org/
[20] HTTrack Evaluation, http://e-records.chrisprom.com/httrack-evaluation/


