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Abstract—A ticket dispenser (TD) is used to assist customers 
for the waiting process in, e.g., a shop. This paper deploys a 
mobile ticket dispenser system (MTDS) with waiting time 
prediction to enhance user experience in waiting. For example, the 
MTDS for a restaurant allows a customer to remotely draw a 
ticket for meal order anywhere through a smart phone before 
she/he arrives at the restaurant and therefore reduces her/his 
waiting time. We propose an output indicator and develop a 
discrete event simulation model to investigate the performance of 
the MTDS. Our study indicates that the waiting times can be more 
accurately predicted without consuming much wireless network 
resources and power consumption of mobile devices. 

Index Terms—ticket dispenser, user experience, wireless 
communication, waiting time prediction, queueing analysis 

I. INTRODUCTION 

icket dispensers (TD) are used in supermarkets, retail shops, 

post offices or anywhere that large groups need to be 

assisted in the ordering process. When a customer draws a 

number from the ticket dispenser, the number represents the 

customer’s order in the waiting queue. Traditional TDs require 

a customer to be physically presents in, for example, a 

restaurant to draw the ticket, and then waits for her/his turn to 

get the meal she/he ordered. A popular restaurant always has a 

long queue of customers. Therefore, it is typical that people 

spend long times waiting in the queue before their orders are 

complete, and user experience is not good. This issue can be 

resolved by wireless and mobile technologies. Specifically, a 

mobile ticket dispenser system (MTDS) allows a customer to 

remotely draw a ticket for meal order anywhere through a smart 

phone. With the MTDS, a customer can order before arriving at 

the restaurant, and the waiting time can be significantly reduced. 

However, the customer may arrive later than her/his order is 
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complete by the restaurant, and receives a "cold" meal. 

Therefore, how to advise customers with precise predicted 

waiting times is essential to improve user experience. 

Existing studies [1-4] on remote reservation and booking 
focus on the user interface designing, the customer list 
management, and the booking service. Waiting time prediction 
is seldom investigated. This paper develops an MTDS with 
waiting time prediction based on the client-server architecture. 
Through wireless connectivity, before a customer arrives at the 
restaurant, the MTDS can accurately predict the waiting times 
via the message exchange between the MTDS server and the 
MTDS client to improve user experience.  

This paper is organized as follows. Section II introduces the 

proposed mobile ticket dispenser system (MTDS). Section III 

investigates the waiting time prediction mechanism. Section IV 

proposes an analytic model for the MTDS and investigates the 

performance of the MTDS by numerical examples, and the 

conclusions are given in Section V. 

II. A MOBILE TICKET DISPENSER SYSTEM

A mobile TD system (MTDS) consists of the MTDS server 

(Fig. 1 (a)) and the MTDS client (Fig. 1 (b)). We have 

implemented the MTDS server in an open service platform 

called "BuddySquare" [5]. The MTDS can be connected to a 

mobile network such as 3G or LTE (Figs. 1 (c) and (d)) [6-7]. 

Alternatively, it can be connected to the Wi-Fi network (Fig. 1 

(e)). The MTDS follows the client-server model where an 

MTDS client is downloaded from an app store and installed in a 

smart phone, or is implemented in a web site that can be 

directly accessed by a smart phone. The MTDS application can 

also work with a feature phone, where tickets are delivered by 

Short Message Service (SMS). A customer can use the MTDS 

client to send an order request to the MTDS server through the 

Internet (Fig. 1 (f)). The communication path is established 

between the MTDS client and the MTDS server through 

(b)-(c)-(d)-(f)-(a) for 3G/LTE service or (b)-(e)-(f)-(a) for  
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Fig. 1: The MTDS system architecture. 

Wi-Fi service. Fig. 2 illustrates the user interface of the MTDS 

client we implemented. 

Without loss of generality, consider a to-go restaurant that 

allows customers to order meals through the MTDS. When a 

customer uses the MTDS client to make a meal order at time t0, 

if there are n-1 orders in the waiting queue of the restaurant, 

then we denote the customer as Cn. Customer Cn will receive a 

pair of ticket numbers (na, na+n) from the MTDS server, where 

na is the ticket number of the order being served by the cook at 

t0 or the number of the order completed by t0 if the cook is idle, 

and na+n is the dispensed ticket number for Cn. Without loss of 

generality, assume that there is one cook in the restaurant (our 

model can be directly extended for multiple cooks). For n>1, 

when Cn draws the ticket, the cook is working on an order, n-1 

orders are in the waiting queue, and Cn’s order will be the n-th 

order in the waiting queue. If n=1, then either the cook is idle or 

is working on an order, and Cn’s order will be the only one in 

the waiting queue. When Cn arrives at the restaurant, if the 

(i+na)-th order is in service, where , then Cn should wait. 

The MTDS works with the following steps: 
Step 1. A customer uses the MTDS client to order a meal from 

the to-go restaurant.  

Step 2. The order request is sent to the MTDS server. The 

MTDS server issues a pair of ticket numbers (na, na+n) 

to the customer. Denote the customer as Cn. The MTDS 

server also suggests the predicted waiting time t when 

Cn's ticket is issued (i.e., at t0). We will elaborate more 

on t later. 

Step 3. The restaurant handles the meal orders following the 

FIFO (first in first out) discipline. 

Fig. 2: The user interface of the MTDS client. 

Step 4. Before arriving at the restaurant, Cn may be informed of 

“adjusted waiting times” several times; In other words, 

the MTDS dynamically adjusts the predicted waiting 

time for better accuracy. The details will be given in 

Section 5. 

Step 5. Cn arrives at the restaurant and shows the ticket number 

(in the MTDS client) to get the ordered meal when it is 

ready. 

In Step 2, we assume that the restaurant always handles the 

meal orders following the FIFO discipline no matter when the 

corresponding customer arrives at the restaurant. In other words, 

the ordered meal may be prepared before the customer arrives. 

In this scenario, both the cook and customers are "patient". The 

restaurant may exercise a prepaid mechanism to guarantee that 

the money is always received even if the customer does not 

show up. On the other hand, the customer always comes to pick 

up her/his order so that the prepaid money will not be wasted. 

We will address the scenario for impatient customers and/or the 

cook (who will drop the orders) in a separate paper and will not 

be elaborated here. 

III. THE WAITING TIME PREDICTION MECHANISM

The waiting time of Cn is the summation of services times for 

the orders ahead of Cn when her/his MTDS ticket is issued. 

Suppose that Cn requests the MTDS ticket at time t0. Let  be 

the service time of order i in the waiting queue, where i=0 to n. 

That is,  is the service time for Cn. If the cook is not idle at t0, 

then let  be the residual service time of the order being 

handled by the cook at t0 (i.e. between the arrival of Cn’s order 

and when the service for the first order is complete). Let  be 

the actual order-ready time for Cn. Then 

      (1) 

From (1), a simple equation to predict the waiting time by using 

the means of  and  can be expressed 
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Fig. 3: The service time measured for post office and Cottage 
Waffle. 

 (2) 

From the residual life theorem [8],  in (2) is expressed as 

 

where V is the variance of the service times , for . In (2), 

the  distribution depends on the service behavior of the cook 

in the restaurant (or the clerk of the post office). In this study, 

we actually measured the service times for two service 

examples during January, 2014. The first example is the post 

office in National Chiao Tung University. The second example 

is a bake shop called “Cottage Waffle” which provides freshly 

baked waffles. Fig. 3 shows the service time distributions of the 

post office and Cottage Waffle. In the first example, the mean 

service time of the post office is =158.3 seconds and 

variance V=23805.9=0.95 . In the second example, the 

mean service time of Cottage Waffle is =112.8 seconds 

and variance V=10051.8=0.79 . A Gamma distribution is 

used to fit the sampled service times. The Gamma distribution 

is selected because it can be shaped to represent many 

distributions as well as measured data [9-10]. A Gamma 

density function with the shape parameter  and the scale 

parameter  is 

                              (3) 

where , and . 

In our observation, most stores with skillful services can  

 
Fig. 4: The timing diagram. 

control the service time variances such that V E[ ]2. If =1 in 

(3), i.e., V=E[ ]2, then both  and  are exponentially 

distributed, and the waiting time  of Cn has an Erlang 

distribution. In this scenario we can consider another waiting 

time prediction equation based on exponential service times 

with the mean =1/ . That is, the predicted waiting time t 
has the Erlang density function with the shape parameter n and 

the scale parameter : 

                               (4) 

For the two service examples we observed in January, 2014, 
the variances V of the service times in one month are 0.95E[ ]2 
and 0.79E[ ]2, respectively. 

 

IV. THE ANALYTIC MODEL 

Suppose that Cn makes a meal order at time t0 through a 

smart phone, and the MTDS server suggests a predicted waiting 

time t at Step 2 of Section 2. The predicted waiting time t 
described in Section 3 can be considered as a random variable. 

Suppose that random variable t has the density function . 

Fig. 4 illustrates the timing diagram for Cn’s order, where  is 

the service time of order i, and  is the residual service time of 

the order being handled by the cook at time t0 (when Cn’s 

MTDS ticket is issued). The actual order-ready time for Cn is 

expressed in (1). 

Assume that  are independent and identically 

distributed (i.i.d.) random variables. The predicted waiting time 

t is used to predict  for Cn, and its accuracy can be estimated 

by 

                                    (5) 

which is the error between the actual order-ready time  and 

the predicted waiting time t. That is, the prediction is accurate if 

te is small. If  has the density functions  and the Laplace 

transforms , then  is also a random variable, and its 

density function  and Laplace transform  can be 

derived as follows. Suppose that  has the density function 

1st order
complete

2nd order
complete

Cn's order 
issued

Predicted waiting-
time for Cn

Actual order-
ready time for Cn
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 with Laplace transform . If  is nonlattice, 

then from the residual life theorem [5], we have 

 

From the convolution of the Laplace transforms,  is 

expressed as 

  (6) 

Since  are i.i.d. random variables, , where 

, and (6) is re-written as 

  (7) 

If Cn actually arrives at the restaurant at the predicted waiting 

time t, and the (i+na)-th order is in service, where , then 

, and Cn should wait for the period . In contrast, if 

, then  and Cn may get a cold meal. The probability 

that  can be expressed as 

 

From (5), let  be the error of the 

predicted waiting time when  and 

 be the error when . Then  

is derived as 

 

 

                                                                                (8) 

Suppose that t has an Erlang distribution with parameters n and 

 (i.e. the prediction equation (4) is used), then the first term of 

(8) is 

 

 

 

         (9) 

The second term of (8) is 

 

  

   (10) 

If  has a Gamma distribution with mean  and variance V, 

then the Laplace transform of  is 

 

In (7), if the cook is idle, the term  in (10) is expressed 

as 

(11) 

In (7), if the cook is busy at t0, the term  in (10) is 

expressed as 

 

       (12) 

In (12), 

 

For Gamma  distribution, if the cook is idle at t0, then from (9), 

(10), and (11), (8) is expressed as 

                       (13) 

If the cook is busy at t0, then from (9), (10), and (12), (8) is 

expressed as 
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Fig. 5: Accuracy of prediction equations (2) and (4) against n. 

 

       

 

 

(14) 

Similarly,  is derived as 

 

 

 

                                                                      (15) 

The first term of (15) is 

 

     (16) 

The second term of (15) is 

 

      (17) 

For Gamma  distribution, if the cook is idle at t0, substitute 

(16) and (17) into (15) to yield 

 
Fig. 6: Accuracy of prediction equations (2) and (4) against V. 

                  (18) 

If the cook is busy at t0, then (15) is expressed as 

 

 

(19) 

We have developed a discrete-event simulation model to 

compute E[ ], E[t], , and  for prediction equation (4). The 

approach is similar to the one in [11]. Equations (13), (14), (18) 

and (19) are used to validate against simulation experiments, 

where the errors between the analytic model and the simulation 

experiments are within 1%. Then we extend the simulation 

model to accommodate the prediction equations (2). Define  

as the accuracy indicator expressed as 

 

where t is computed by prediction equations (2) and (4). As we 

mentioned, the smaller the  value, the better the prediction. 

Based on the experiments, we make the following observations. 

Effect of n: Fig. 5 illustrates the  curves for prediction 

equations (2) and (4), where V=0.065E[ ]2, 0.79E[ ]2, and 

0.95E[ ]2, respectively. The figure indicates that  decreases 

as n increases. In other word, both equations (2) and (4) are 

more accurate as n increases. Prediction equation (2) is more 
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accurate than (4) for a small n. For large n and V, both equations 

have similar accuracy performance. 

Effect of service times’ variance V: Fig. 6 plots the  values 

against V for equations (2) and (4), where n = 10, 50, and 100. 

The figure shows that the predictions are more accurate for 

small V or large n. The figure also indicates that (2) is more 

accurate than (4) for small V. Both equations have same 

accuracy when V is large. Although (4) assumes V=E[ ]2 and 

was expected to fit better for  with large V, Figs. 4 and 5 

indicate that (2) always outperforms (4). In the remainder of 

this paper, we only consider (2) for waiting time prediction. 

Figs. 5 and 6 show that accuracy of the prediction is highly 

affected by the variance V of service times and the number n of 

orders in the waiting queue. The accuracy indicator  is large 

(i.e., the error  is large) when V is large. Based on the above 

discussion, the waiting time prediction is accurate when n is 

large and V is small for both prediction equations (2) and (4).  

 

V. CONCLUSION 

This paper developed a mobile ticket dispenser system 

(MTDS) with waiting time prediction that enhances user 

experience in the ordering process. We investigated the impact 

of the queue length n and the variance of the service times V on 

accuracy of predicted waiting time. An analytic model was 

proposed to model the waiting time prediction. The analytic 

results were used to validate against the simulation experiments. 

We define the indicator  to evaluate the MTDS performance. 

The accuracy indicator  describes the error rate between the 

actual order-ready time and the predicted waiting time. Our 

study indicated that  decreases as V decreases or n increases; 

that is, the MTDS can effectively assist the ordering process for 

a popular restaurant that is crowded (with large waiting queue 

length n) and the cook prepares meals with good management 

on controlling the service times with small variance V. 

In summary, we have developed an MTDS system and 

provided guidelines to predict the waiting time. Specifically, 

we showed how to predict the waiting time by the MTDS for 

good user experience. 
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