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Abstract—Software defined networking brings many 

possibilities to network security, one of the most important 

security challenge it can help with is the possibility to make 

network traffic pass through specific security devices, in other 

words, determine where to deploy these devices logically. 

However, most researches focus on high level policy and 

interaction framework but ignored how to translate them to low-

level OpenFlow rules with scalability. We analyze different 

actions used in common security scenarios and resource 

constraints of physical switch. Based on them, we propose a rule 

translation implementation which can optimize the resource 

consumption according to different actions by selecting forward 

path dynamically.  
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I.  INTRODUCTION 

Software Defined Networking (SDN) provides an 
abstraction of network devices and operations, enables flexible 
network policies by allowing controller applications to install 
packet-handling rules on a distributed collection of switches. It 
brings network security many possibilities, since current 
security devices are deployed on fixed position, but more 
advanced attacks, such as APT, use devices inside network to 
launch exploitation which cannot detect by security devices 
deployed on network edge. Software Defined Security (SDS) 
was proposed which present exploiting the SDN architecture to 
enhance network security. With SDN, the suspicious network 
packets can be processed more flexibly, providing of a highly 
reactive security monitoring, analysis and response system. 
The central controller is key to this system. Traffic analysis or 
anomaly-detection methods deployed in the network generate 
security-related data, which can be regularly transferred to the 
central controller. Applications can be run at the controller to 
analyze and correlate this feedback from the complete network. 
Based on the analysis, new or updated security policy can be 
propagated across the network in the form of flow rules.  

Security as an advantage of the SDN framework has been 
recognized, a lot of work have been proposed to cooperation 
between security devices and SDN controllers [1, 2], but most of 
them focus on the framework and policy language while give 
limit consideration and information about how to translate 
them to OpenFlow[3] rules, like it is a simple problem and easy 
to handle.  

But actually, maybe it is not so difficult in a small 
experimental network, but if we want process this from not 
theoretical view but feasible view, especially deploying SDS 
solution in large scale network, the following issues have to be 
considered: 

 There are several different types of actions, i.e., mirror,
redirection, drop, with different considerations when
decide the forwarding tables. For example, it is
common that sent a suspicious packet to IDS while do
not want to interrupt the existed communication. In this
action a packet need go through specific switch twice,
but how switch know it should forward the packet to
IDS or the original destination. A detail analysis of
action demands of all possible scenarios is needed.

 Physical switches do have constraints like Ternary
Content Addressable Memory (TCAM), CPU,
interface bandwidth, etc. TCMA is the only way to
identify the matching entries for each packet. However,
TCAM is large and power hungry, which make it too
expensive. The merchant chipsets in commodity
switches typically support just a few thousand of
entries which means we cannot add new rules infinitely.

These issues force us to consider many low-level details 
including the choice of path, the resource limits on each switch. 
We analysis the actions demand carefully and proposed a 
translation algorithm. And we implement a proof-of-concept 
system and experiment with POX and Mininet, the results 
show that it takes less than 100 ms to translate high-level 
policy to low-level flow rules in a network contains up to 1024 
switches automatically, avoiding to manage the low-level 
resources. 

In summary, this paper makes the following contributions: 

 Presentation of the different forwarding templates for
different actions by analyzing common scenarios in
network security.

 Development of a novel path decision algorithm which
minimize resource consumption for different actions
based on the template and shortest path algorithm.

 A prototype implementation and preliminary 
performance evaluation of its overhead.
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II. BACKGROUND AND MOTIVATION 

In this section we present a common example in network 
security scenario and explain the difficulty it faced.  

Figure 1 shows a hacker attacks host A and gains control, 
then wants attack host B and C through host A. In order to 
detect and stop this kind of attack, firstly we need mirror the 
network traffic to IDS. Since one of the biggest problem is the 
false alert, sometimes we need double check, e.g. if host A 
attacks other host inside network, then it must be a real alert, 
which needs examine packets from A to B. It is difficult to 
deploy in current network, but using SDN, we can redirect the 
packets from host A to host B to the IDS, if there is no attack, 
then return it back to host B, otherwise drop them. 

Fig. 1. Softwre defined security example 

As we know, there are some different actions, mirror, 
redirection, drop, etc. However, the switches just forward the 
packets according flow tables, check the match fields, e.g., 
Ingress Port, Ether src and dst, Ether type, IP src and dst, TCP 
src and dst port, Vlan id and priority. Each action need a few 
flow rule operations and some of them need operate very 
carefully, e.g. IDS need mirror the packets, but which switch 
should be add rules to, from the switch near the source or the 
opposite? When switch A received the packets from host A to 
host B, should it forward them to switch B or host B? 

Furthermore, as the figure 1 shows, most of the rule 
changes happened in few switches while others can do nothing. 
If it is a large network with thousands of hosts or more, this 
kind of operation will be frequent and plenty. The resource in 
some switches will be exhausted while the others will stay 
quite free. If we can migrate some of them to the free ones and 
keep the action results unchanged, it will let the SDS solution 
more scalable.  

Though these issues can be resolved by careful design, they 
force programmers to reason about many low-level details. It 
will be much better if we can automatically translate high-level 
policy to low-level flow rules.  

III. IMPLEMENTATION 

As we saw in the previous section, how to generate flow 
rules from high level policy efficiently is not an easy task. To 
address this problem, we propose an implementation which 

take topology and resource into account in order to hide the 
detail and use the resource as balanced as possible.  

Fig. 2. System overview 

As Figure 2 shows, firstly, we analysis the different action 
policy needed and exploit OpenFlow protocol to support them. 
Those analyses are generalized to a template db which can be 
used when new action arrive. At the same time, the device 
information was collected to obtain topology and resource, this 
can be done by SNMP reading. Now when action defined by 
high-level policy from security devices, the path decision 
module will decide the optimized path and generate flow rules.  

A. Actions analysis 

According different the network security applications, 5 
kinds of actions are given: 

 Mirror: Most DPI based application such as IDS/IPS 
need analysis the packets, but not all the packets they 
need can be collected on fix position, so it’s an 
important action which duplicate the packets and send 
to security devices. 

 Redirection: sent packet to security devices, which is 
used to send packets to fake system like honeypot. 

 MITM: differ from Redirection, MITM not only sent 
packet to security devices, but also send them back to 
original destination, which cannot be found by attacker 
or user. 

 Drop: simply drop the packet so the attack’s packet 
cannot arrive the target. Usually used in prevent an 
attacker outside our network from access some node 
inside our network. 

 Quarantine: not simply drop but only let them reach 
specific range. 

As we see, the actions are much more flexible than current 
simple access or drop, but at the same time, they need us 
design the flow table carefully. Table I give a description of the 
different actions and examples used in common network 
security applications. 

If Mirror action, we find out all path from the node in path 
N1, N3 to N5, and select the shortest path in them, which 
means the TCMA is least, bandwidth usability is high and the 



1 for action in all_actions: 

2     switch(action.type): 

3         case Mirror: 

4             for node in path[src_node, dst_node]: 

5                 do min_path(node, mir_node, mir_template) 

6         case Redirection: 

7             do min_path(src_node, dst_node,  red_template) 

8         case MITM: 

9             do p1 = min_path(src_node, mitm_node,  

                                red_template) 

10                  P2 = min_path(mith_node, dst_node,  

                                red_template) 

11             for node in (p1∩p2): 

12                 do set_port_tag 

13         case Drop: 

14             for node in path[action.src, action.dst]: 

15                 do min_path(node, dst_node, drop_template) 

16     rule_generate(path, tag) 

hop is short. Note the TCMA is always be considered at the 
first priority, but the bandwidth and hop differ from different 
actions. For Mirror action, the hop is less important than 
bandwidth.  

TABLE I.  ACTION  DESCREPTION 

Action 

Type 
Example 

OpenFlow 

Feature 

Mirror N1, N3 -> N1, {N3 & N5} Multi_action, 

Redirection N1, N3 -> N1, {!N3}, N6 
In_port, 

priority 

MITM N1, N3 -> N1, N6, N3 
In_port, 

priority 

Drop N1, {ALL} -> N1, {!N3} priority 

Quarantine 
N3, {ALL} -> N1, {!(N4 & N5 & 

N6)} 
priority 

 

If Redirection action, we should let the packets go to N6 
not N3, which need find out all path from the node in path N1, 
N3 to N6, and select the shortest one without N3.  

The MITM is particular because it need return the packet to 
N3. That means for switch N1, at first it needs forward the 
packet to N6, and then it needs forward the packet to N3. 
Obviously, the switch will be confused since it cannot match 
two flow rules. Some research give tag-based solutions, but it 
need use some fields in flow header which may be used. Here 
we use two Ingress Port include flow rule instead the one only 
match destination IP address. If the packet from N1 to N3 
comes from ingress port connect to N1, which means it is 
original output traffic and should forward to IDS, then forward 
it to N3; if the packet comes from ingress port connect to N3, 
which means it has been checked by the IDS and should be 
returned back, then forward it to N1. 

Drop and Quarantine action is a little different from the 
above three. Drop needs add a drop rule before the packet 
arrive N3, so we can add this rule in any node in the path N1, 
N3, but if we need drop packet to a set of node, we should 
consider to combine them if possible, since it can reduce the 
rule numbers. 

As we see, different actions need different rule generation 
methods and have different demands to resource. There are 
some OpenFlow features we exploited to support the actions.  
Firstly, the action supported one or more forward PORT set in 
one rule. It is useful in Mirror action. Secondly, the flow rule 
priority. Since matching starts at the first flow table and may 
continue to additional flow tables. Flow entries match packets 
in priority order, with the first matching entry in each table 
being used. If a matching entry is found, the instructions 
associated with the specific flow entry are executed. This 
feature is used to set a subset forwarding rule in a whole set, 
like redirection, drop action. Finally, IN_PORT field in 
matching field is important for those action which make a 
packet go through a switch one more time, like MITM.  

All kind of action and some features it need store in a basic 
template DB, the features include resource constraints too. 
When a new action arrive, the DB will select proper path 
template for it. Of cause, we can add new template to the 

template DB if new kind of security application added, it is 
extensible. 

B. Path decision 

There are several resources we need consider, one of them 
is TCAM, which can read all rules in parallel to identify the 
matching entries for each packet. However, it is expensive and 
power hungry so cannot be used too much. The other is 
Bandwidth, since some actions may duplicate the packets or 
make the packet out and in, which double the bandwidth they 
needed. Some other resources (e.g. CPU/Memory) may be 
need to consider but just use bandwidth to present them, if 
needed, we can add them to our implementation too. 

We want find a path which can meet the different actions’ 
need and minimize the resource consumption at the same time. 
All the actions can be treated as a path decision problem which 
the path contains specific nodes.  

So it is much different from traditional routing algorithm 
since traditional routing algorithm needs find a shortest path 
from the source node to the destination node, while our 
algorithm needs find a series node to deploy OpenFlow rules. 

We can still use the shortest path solving idea, but not 
single-source shortest paths. We have to find specific shortest 
paths according to different actions.  

Fig. 3. Path decision algorithm 

As the figure 3 presented, according to different action, the 
algorithm process differently. If mirror action, we try to find a 
node in the path from source node to destination node which 
has the shortest path to mirror node. This kind of idea is also 
used in drop or quarantine action. If redirection action, we just 
find a shortest path from the source node to new destination 
node by set a high priority rule to overcome the original one. 
While in MITM action, a packet may go through some 
switches more than once, so we need to set IN_PORT tag in 
rules to make the switches know how to forward the packet 
according the ingress port. 



 

IV. EVALUATION 

To analyze the performance overhead of our 
implementation, we deployed our prototype into a laboratory 
network Mininet. We use POX as the controller. The prototype 
was hosted on two 6-core Intel Xeon E7430 CPUs with 48 GB 
RAM and running a CentOS.  

Fig. 4. Overhead 

In Figure 4, we illustrate the results representing the 
computational delay required to conduct path decision analysis. 
As it shows, our implementation bring overhead to the 
controller, but when the network it handled is not too large, e.g. 
less than 512 switches, the overhead is acceptable. However, if 
the number large than 512, as the switch number increase, the 
overhead increase quickly. There are two possible reasons: one 
is because the complexity of shortest algorithm is proportional 
to the square of the node number, when the switch number 
become big enough, the complexity become much bigger; the 
other is the system overhead of Mininet, its simulation cannot 
afford too much switches. Though the experiment result is 
preliminary, it still shows it is possible to make the translation 
process more automatic and efficient by acceptable overhead. 

V. RELATED WORK 

Casado et al.[3,4] specifically considered the security aspects 
of a separate control and forwarding framework. SANE[4] focus 
on a logically centralized controller responsible for 
authentication of hosts and policy enforcement. Ethane[5] 
extended the work of SANE but required less alteration to the 
original network. Based on these work, OpenFlow was 
proposed.  

OpenSAFE[1] presents a high-level policy language to 
manage the routing of traffic through network monitoring 
devices. Based on similar idea, CloudWatcher[6] focusing on 
SDN in the cloud and controls network flows to make specific 
network packets go through specific security devices. Fresco[2]  
presents an OpenFlow Security Application Development 
Framework. The idea behind FRESCO is to allow the rapid 
design and development of security application by some 
reusable modules, which can be incorporated as an OpenFlow 
controller application. But both above researches mentioned 
how to translate their high-level policy to low-level flow rules. 

As the security application or device is a kind of network 
middle-box, some middle-box policy enforcement research is 

also considerable. The FlowTags[7] proposes the use of 
minimally modified middle-boxes, which interact with a SDN 
controller through a FlowTags Application Programming 
Interface (API). FlowTags, consisting of traffic flow 
information, are embedded in packet headers to provide flow 
tracking and enable controlled routing of tagged packets. 
SIMPLE[8] is an approach for using SDN to manage middle-
box deployments. Neither SDN capabilities nor middle-box 
functionality modifications is needed, which makes it can be 
employed more easily than [7] for legacy systems. A 
disadvantage of them is that they focus on static policy, which 
means they cannot process dynamic actions. 

VI. CONCLUSION 

SDS is a hot topic in network security, most research pay 
more attention on high level policy and framework, manipulate 
the OpenFlow rules from theoretical view, while less on how to 
look realize it efficiently from feasible view. We propose a 
novel path decision algorithm based on action template and 
shortest path algorithm. Though there are many advanced 
problems need be researched, the preliminary result shows it 
can translate the high level policy to low level rule efficiently.  
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