
A Scalable Flow Rule Translation Implementation

For Software Defined Security

Hao Tu1, Weiming Li1*, Dong Li1,Junqing Yu1,2

Network and Computation Center1

School of Computer Science and Technology2

Huazhong University of Science and Technology

Wuhan, China

{tuhao, lwm, lidong, yjqing}@hust.edu.cn

Abstract—Software defined networking brings many

possibilities to network security, one of the most important

security challenge it can help with is the possibility to make

network traffic pass through specific security devices, in other

words, determine where to deploy these devices logically.

However, most researches focus on high level policy and

interaction framework but ignored how to translate them to low-

level OpenFlow rules with scalability. We analyze different

actions used in common security scenarios and resource

constraints of physical switch. Based on them, we propose a rule

translation implementation which can optimize the resource

consumption according to different actions by selecting forward

path dynamically.

Keywords—network security; softwre defined networking

I. INTRODUCTION

Software Defined Networking (SDN) provides an
abstraction of network devices and operations, enables flexible
network policies by allowing controller applications to install
packet-handling rules on a distributed collection of switches. It
brings network security many possibilities, since current
security devices are deployed on fixed position, but more
advanced attacks, such as APT, use devices inside network to
launch exploitation which cannot detect by security devices
deployed on network edge. Software Defined Security (SDS)
was proposed which present exploiting the SDN architecture to
enhance network security. With SDN, the suspicious network
packets can be processed more flexibly, providing of a highly
reactive security monitoring, analysis and response system.
The central controller is key to this system. Traffic analysis or
anomaly-detection methods deployed in the network generate
security-related data, which can be regularly transferred to the
central controller. Applications can be run at the controller to
analyze and correlate this feedback from the complete network.
Based on the analysis, new or updated security policy can be
propagated across the network in the form of flow rules.

Security as an advantage of the SDN framework has been
recognized, a lot of work have been proposed to cooperation
between security devices and SDN controllers [1, 2], but most of
them focus on the framework and policy language while give
limit consideration and information about how to translate
them to OpenFlow[3] rules, like it is a simple problem and easy
to handle.

But actually, maybe it is not so difficult in a small
experimental network, but if we want process this from not
theoretical view but feasible view, especially deploying SDS
solution in large scale network, the following issues have to be
considered:

 There are several different types of actions, i.e., mirror,
redirection, drop, with different considerations when
decide the forwarding tables. For example, it is
common that sent a suspicious packet to IDS while do
not want to interrupt the existed communication. In this
action a packet need go through specific switch twice,
but how switch know it should forward the packet to
IDS or the original destination. A detail analysis of
action demands of all possible scenarios is needed.

 Physical switches do have constraints like Ternary
Content Addressable Memory (TCAM), CPU,
interface bandwidth, etc. TCMA is the only way to
identify the matching entries for each packet. However,
TCAM is large and power hungry, which make it too
expensive. The merchant chipsets in commodity
switches typically support just a few thousand of
entries which means we cannot add new rules infinitely.

These issues force us to consider many low-level details
including the choice of path, the resource limits on each switch.
We analysis the actions demand carefully and proposed a
translation algorithm. And we implement a proof-of-concept
system and experiment with POX and Mininet, the results
show that it takes less than 100 ms to translate high-level
policy to low-level flow rules in a network contains up to 1024
switches automatically, avoiding to manage the low-level
resources.

In summary, this paper makes the following contributions:

 Presentation of the different forwarding templates for
different actions by analyzing common scenarios in
network security.

 Development of a novel path decision algorithm which
minimize resource consumption for different actions
based on the template and shortest path algorithm.

 A prototype implementation and preliminary
performance evaluation of its overhead.

* Corresponding author.

Copyright IEICE - Asia-Pacific Network Operation and
Management Symposium (APNOMS) 2014

II. BACKGROUND AND MOTIVATION

In this section we present a common example in network
security scenario and explain the difficulty it faced.

Figure 1 shows a hacker attacks host A and gains control,
then wants attack host B and C through host A. In order to
detect and stop this kind of attack, firstly we need mirror the
network traffic to IDS. Since one of the biggest problem is the
false alert, sometimes we need double check, e.g. if host A
attacks other host inside network, then it must be a real alert,
which needs examine packets from A to B. It is difficult to
deploy in current network, but using SDN, we can redirect the
packets from host A to host B to the IDS, if there is no attack,
then return it back to host B, otherwise drop them.

Fig. 1. Softwre defined security example

As we know, there are some different actions, mirror,
redirection, drop, etc. However, the switches just forward the
packets according flow tables, check the match fields, e.g.,
Ingress Port, Ether src and dst, Ether type, IP src and dst, TCP
src and dst port, Vlan id and priority. Each action need a few
flow rule operations and some of them need operate very
carefully, e.g. IDS need mirror the packets, but which switch
should be add rules to, from the switch near the source or the
opposite? When switch A received the packets from host A to
host B, should it forward them to switch B or host B?

Furthermore, as the figure 1 shows, most of the rule
changes happened in few switches while others can do nothing.
If it is a large network with thousands of hosts or more, this
kind of operation will be frequent and plenty. The resource in
some switches will be exhausted while the others will stay
quite free. If we can migrate some of them to the free ones and
keep the action results unchanged, it will let the SDS solution
more scalable.

Though these issues can be resolved by careful design, they
force programmers to reason about many low-level details. It
will be much better if we can automatically translate high-level
policy to low-level flow rules.

III. IMPLEMENTATION

As we saw in the previous section, how to generate flow
rules from high level policy efficiently is not an easy task. To
address this problem, we propose an implementation which

take topology and resource into account in order to hide the
detail and use the resource as balanced as possible.

Fig. 2. System overview

As Figure 2 shows, firstly, we analysis the different action
policy needed and exploit OpenFlow protocol to support them.
Those analyses are generalized to a template db which can be
used when new action arrive. At the same time, the device
information was collected to obtain topology and resource, this
can be done by SNMP reading. Now when action defined by
high-level policy from security devices, the path decision
module will decide the optimized path and generate flow rules.

A. Actions analysis

According different the network security applications, 5
kinds of actions are given:

 Mirror: Most DPI based application such as IDS/IPS
need analysis the packets, but not all the packets they
need can be collected on fix position, so it’s an
important action which duplicate the packets and send
to security devices.

 Redirection: sent packet to security devices, which is
used to send packets to fake system like honeypot.

 MITM: differ from Redirection, MITM not only sent
packet to security devices, but also send them back to
original destination, which cannot be found by attacker
or user.

 Drop: simply drop the packet so the attack’s packet
cannot arrive the target. Usually used in prevent an
attacker outside our network from access some node
inside our network.

 Quarantine: not simply drop but only let them reach
specific range.

As we see, the actions are much more flexible than current
simple access or drop, but at the same time, they need us
design the flow table carefully. Table I give a description of the
different actions and examples used in common network
security applications.

If Mirror action, we find out all path from the node in path
N1, N3 to N5, and select the shortest path in them, which
means the TCMA is least, bandwidth usability is high and the

1 for action in all_actions:

2 switch(action.type):

3 case Mirror:

4 for node in path[src_node, dst_node]:

5 do min_path(node, mir_node, mir_template)

6 case Redirection:

7 do min_path(src_node, dst_node, red_template)

8 case MITM:

9 do p1 = min_path(src_node, mitm_node,

 red_template)

10 P2 = min_path(mith_node, dst_node,

 red_template)

11 for node in (p1∩p2):

12 do set_port_tag

13 case Drop:

14 for node in path[action.src, action.dst]:

15 do min_path(node, dst_node, drop_template)

16 rule_generate(path, tag)

hop is short. Note the TCMA is always be considered at the
first priority, but the bandwidth and hop differ from different
actions. For Mirror action, the hop is less important than
bandwidth.

TABLE I. ACTION DESCREPTION

Action

Type
Example

OpenFlow

Feature

Mirror N1, N3 -> N1, {N3 & N5} Multi_action,

Redirection N1, N3 -> N1, {!N3}, N6
In_port,

priority

MITM N1, N3 -> N1, N6, N3
In_port,

priority

Drop N1, {ALL} -> N1, {!N3} priority

Quarantine
N3, {ALL} -> N1, {!(N4 & N5 &

N6)}
priority

If Redirection action, we should let the packets go to N6
not N3, which need find out all path from the node in path N1,
N3 to N6, and select the shortest one without N3.

The MITM is particular because it need return the packet to
N3. That means for switch N1, at first it needs forward the
packet to N6, and then it needs forward the packet to N3.
Obviously, the switch will be confused since it cannot match
two flow rules. Some research give tag-based solutions, but it
need use some fields in flow header which may be used. Here
we use two Ingress Port include flow rule instead the one only
match destination IP address. If the packet from N1 to N3
comes from ingress port connect to N1, which means it is
original output traffic and should forward to IDS, then forward
it to N3; if the packet comes from ingress port connect to N3,
which means it has been checked by the IDS and should be
returned back, then forward it to N1.

Drop and Quarantine action is a little different from the
above three. Drop needs add a drop rule before the packet
arrive N3, so we can add this rule in any node in the path N1,
N3, but if we need drop packet to a set of node, we should
consider to combine them if possible, since it can reduce the
rule numbers.

As we see, different actions need different rule generation
methods and have different demands to resource. There are
some OpenFlow features we exploited to support the actions.
Firstly, the action supported one or more forward PORT set in
one rule. It is useful in Mirror action. Secondly, the flow rule
priority. Since matching starts at the first flow table and may
continue to additional flow tables. Flow entries match packets
in priority order, with the first matching entry in each table
being used. If a matching entry is found, the instructions
associated with the specific flow entry are executed. This
feature is used to set a subset forwarding rule in a whole set,
like redirection, drop action. Finally, IN_PORT field in
matching field is important for those action which make a
packet go through a switch one more time, like MITM.

All kind of action and some features it need store in a basic
template DB, the features include resource constraints too.
When a new action arrive, the DB will select proper path
template for it. Of cause, we can add new template to the

template DB if new kind of security application added, it is
extensible.

B. Path decision

There are several resources we need consider, one of them
is TCAM, which can read all rules in parallel to identify the
matching entries for each packet. However, it is expensive and
power hungry so cannot be used too much. The other is
Bandwidth, since some actions may duplicate the packets or
make the packet out and in, which double the bandwidth they
needed. Some other resources (e.g. CPU/Memory) may be
need to consider but just use bandwidth to present them, if
needed, we can add them to our implementation too.

We want find a path which can meet the different actions’
need and minimize the resource consumption at the same time.
All the actions can be treated as a path decision problem which
the path contains specific nodes.

So it is much different from traditional routing algorithm
since traditional routing algorithm needs find a shortest path
from the source node to the destination node, while our
algorithm needs find a series node to deploy OpenFlow rules.

We can still use the shortest path solving idea, but not
single-source shortest paths. We have to find specific shortest
paths according to different actions.

Fig. 3. Path decision algorithm

As the figure 3 presented, according to different action, the
algorithm process differently. If mirror action, we try to find a
node in the path from source node to destination node which
has the shortest path to mirror node. This kind of idea is also
used in drop or quarantine action. If redirection action, we just
find a shortest path from the source node to new destination
node by set a high priority rule to overcome the original one.
While in MITM action, a packet may go through some
switches more than once, so we need to set IN_PORT tag in
rules to make the switches know how to forward the packet
according the ingress port.

IV. EVALUATION

To analyze the performance overhead of our
implementation, we deployed our prototype into a laboratory
network Mininet. We use POX as the controller. The prototype
was hosted on two 6-core Intel Xeon E7430 CPUs with 48 GB
RAM and running a CentOS.

Fig. 4. Overhead

In Figure 4, we illustrate the results representing the
computational delay required to conduct path decision analysis.
As it shows, our implementation bring overhead to the
controller, but when the network it handled is not too large, e.g.
less than 512 switches, the overhead is acceptable. However, if
the number large than 512, as the switch number increase, the
overhead increase quickly. There are two possible reasons: one
is because the complexity of shortest algorithm is proportional
to the square of the node number, when the switch number
become big enough, the complexity become much bigger; the
other is the system overhead of Mininet, its simulation cannot
afford too much switches. Though the experiment result is
preliminary, it still shows it is possible to make the translation
process more automatic and efficient by acceptable overhead.

V. RELATED WORK

Casado et al.[3,4] specifically considered the security aspects
of a separate control and forwarding framework. SANE[4] focus
on a logically centralized controller responsible for
authentication of hosts and policy enforcement. Ethane[5]
extended the work of SANE but required less alteration to the
original network. Based on these work, OpenFlow was
proposed.

OpenSAFE[1] presents a high-level policy language to
manage the routing of traffic through network monitoring
devices. Based on similar idea, CloudWatcher[6] focusing on
SDN in the cloud and controls network flows to make specific
network packets go through specific security devices. Fresco[2]
presents an OpenFlow Security Application Development
Framework. The idea behind FRESCO is to allow the rapid
design and development of security application by some
reusable modules, which can be incorporated as an OpenFlow
controller application. But both above researches mentioned
how to translate their high-level policy to low-level flow rules.

As the security application or device is a kind of network
middle-box, some middle-box policy enforcement research is

also considerable. The FlowTags[7] proposes the use of
minimally modified middle-boxes, which interact with a SDN
controller through a FlowTags Application Programming
Interface (API). FlowTags, consisting of traffic flow
information, are embedded in packet headers to provide flow
tracking and enable controlled routing of tagged packets.
SIMPLE[8] is an approach for using SDN to manage middle-
box deployments. Neither SDN capabilities nor middle-box
functionality modifications is needed, which makes it can be
employed more easily than [7] for legacy systems. A
disadvantage of them is that they focus on static policy, which
means they cannot process dynamic actions.

VI. CONCLUSION

SDS is a hot topic in network security, most research pay
more attention on high level policy and framework, manipulate
the OpenFlow rules from theoretical view, while less on how to
look realize it efficiently from feasible view. We propose a
novel path decision algorithm based on action template and
shortest path algorithm. Though there are many advanced
problems need be researched, the preliminary result shows it
can translate the high level policy to low level rule efficiently.

ACKNOWLEDGMENT

We are grateful for helpful comments from the anonymous
reviewers to an earlier version of this paper. This work was
supported by the National Science Foundation of China
No.61370230 and the Fundamental Research Funds for the
Central universities.

REFERENCES

[1] Ballard, Jeffrey R., Ian Rae, and Aditya Akella. "Extensible and scalable
network monitoring using opensafe." Proc. INM/WREN, 2010.

[2] Shin, Seungwon, Phillip Porras, Vinod Yegneswaran, Martin Fong,
Guofei Gu, and Mabry Tyson. "Fresco: Modular composable security
services for software-defined networks." Internet Society NDSS, 2013.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling Innovation in
Campus Networks. In Proceedings of ACM Computer Communications
Review, April 2008.

[4] Casado, Martin, Tal Garfinkel, Aditya Akella, Michael J. Freedman,
Dan Boneh, Nick McKeown, and Scott Shenker. "SANE: A protection
architecture for enterprise networks." In USENIX Security Symposium.
2006.

[5] Casado, Martin, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick
McKeown, and Scott Shenker. "Ethane: Taking control of the
enterprise." ACM SIGCOMM Computer Communication Review 37, no.
4 (2007): 1-12.

[6] S. Shin and G. Gu, “CloudWatcher: Network security monitoring using
OpenFlow in dynamic cloud networks (or: How to provide security
monitoring as a service in clouds?),” in 20th IEEE International
Conference on Network Protocols (ICNP). IEEE, 2012, pp. 1–6.

[7] Fayazbakhsh, Seyed Kaveh, Vyas Sekar, Minlan Yu, and Jeffrey C.
Mogul. "FlowTags: enforcing network-wide policies in the presence of
dynamic middlebox actions." In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking, pp.
19-24. ACM, 2013.

[8] Qazi, Zafar Ayyub, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas
Sekar, and Minlan Yu. "SIMPLE-fying middlebox policy enforcement
using SDN." In Proceedings of the ACM SIGCOMM 2013 conference
on SIGCOMM, pp. 27-38. ACM, 2013.

