
Utilizing Group Prediction by Users’ Interests to
Improve the Performance of Web Proxy Servers

Tsozen Yeh
Department of CSIE

Fu Jen Catholic University
New Taipei City, Taiwan

yeh@csie.fju.edu.tw

Liangtzu Chang
Department of CSIE

Fu Jen Catholic University
New Taipei City, Taiwan

tzu98@csie.fju.edu.tw

Abstract—Companies and institutions often use web proxy
servers to service the multiple requests of the same web
pages (or web objects) from users therein to save the network
bandwidth and reduce the Internet latency. Web proxy servers
usually are geographically close to their clients (users). If web
proxy serves have cached valid copies of requested web objects,
they can be directly delivered to users. Otherwise, users need
to spend a long time on getting web objects from their hosting
web servers. Both cases will require users to wait for their
requests. This period of latency can be largely reduced if web
proxy servers could predict what web objects users may need
in the near future, and send those predicted web objects to
the client sites before their actual usage. Various predicting
algorithms, such as those based on temporal locality and data
mining, had been proposed to enable proxy servers to make
prediction of what web objects users may access. However, they
often need to constantly update and maintain their models
in realtime to make their schemes effective. As a result, for
proxy servers servicing a large number of users, schemes
demanding for complicated and realtime calculation will not
be as useful as expected in practice. Based on websites and web
pages commonly visited by users, we proposed a new model
with an offline learning algorithm to help web proxy servers
make prediction about upcoming requests of web objects from
users. Compared with the hit ratio achieved by the original
environment without prediction, our model can improve the
caching performance of users’ web browsers by up to 51.37%.

Keywords-web performance; web proxy server

I. INTRODUCTION

The amount of traffic on World Wide Web has greatly
increased in recent years. Consequently, this could increase
the Internet latency that users experience, in particular for
large companies or institutions with many users inside. Web
proxy servers (proxy servers) could shorten the Internet
latency by caching web objects geographically close to
their clients [1]. Often a proxy server is assigned for the
same group of users. Users make requests of web objects
through their designated web proxy server if they cannot find
them cached in their local web browsers. Unfortunately, the
limited memory space allocated for individual web browsers
can only cache a small number of web objects accessed
recently. If a proxy server has a valid copy (not missing nor

stale) of the requested web object, then it will be sent to the
requesting client’s site directly. Otherwise, the proxy server
will get a new copy of the web object from the web server
hosting that web object. After that, the proxy server will
send the web object to the client making the request.

Even if the proxy server holds the required web object,
the requesting user still needs to wait for its delivery. The
waiting issue gets worse if the proxy server needs to contact
the hosting web server to obtain a fresh copy of that web
object. Researchers had proposed different ways to enable
proxy servers to make prediction of web objects likely to be
accessed by users in the future [2]–[4]. If proxy servers can
make correct predictions, those predicted web objects can be
sent to their corresponding clients before they are actually
needed later. The period of latency users experienced could
therefore be largely reduced. Many predicting algorithms
used techniques such as temporal and spacial localities [5],
[6], data mining [7], as well as Markov model [8], [9]
to make prediction. The effectiveness of predicting models
mainly lie in three parts. The first one is how accurately the
proxy server can make correct prediction. Obviously this
is the key factor affecting the overall outcome. The proxy
server will not be very helpful if it fails to make correct
prediction most of the time. The second part relates to the
number of web objects predicted each time. Theoretically,
the more web objects predicted and prefetched to users
each time, the better chances that users can get what they
want from those predicted web objects. Nevertheless, we
could easily clog the network if we predict and prefetch
an extremely large number of web objects to the client’s
site each time. This will eventually prolong the client’s
waiting time. The number of web objects predicted should be
limited to a degree not consuming too much of the network
bandwidth. The last one concerns the cost of maintaining
those predicting algorithms. Almost all previous predicting
algorithms require online learning, which means they need to
constantly update their learning model after receiving every
user’s request. In other words, depending on the realtime
learning cost, the real results of their methods could vary
significantly.

Copyright IEICE - Asia-Pacific Network Operation and 
Management Symposium (APNOMS) 2014



We proposed a new technique, which makes prediction
of web objects for possible future access by users. The
main idea is that users with the same interests are likely
to access certain popular websites related to their common
interests, somewhat related to concept of nearest neighbors
[10]. Through processing web traces collected from proxy
servers offline, our model can establish certain number of
groups (called interest groups), one for each different kind
of interest, for users under these proxy servers. Each interest
group will keep information (such as domain names) of
websites belonging to that group and popular web objects
from those websites as well as users with the interest of that
group. For example, lovers of basketball would often visit
the official NBA (National Basketball Association) web-
site (www.nba.com), and other popular basketball related
websites such as ESPN (www.espn.com). Our model will
record popular basketball websites (such as www.nba.com
and www.espn.com) for the basketball group, and keeps a
list of popular web objects from those websites.

For each web request, we check if the requesting user
belongs to any interest group (or groups). If so, our model
will predict and prefetch up to a certain number of popular
web objects from websites within all interest groups that user
had joined. Since most people do not change their interests
overnight, our model does not have to do online learning to
maintain effective prediction. We tested our design on the
proxy server traces over a period of three months collected
from our institution. Through simulation, compared with the
hit ratio achieved by local web browsers without prediction,
we can improve the caching performance of web browsers
by up to 51.37%.

The remainder of this paper is organized as follows.
Section II reviews previous works related to proxy servers
and proxy prediction. Section III describes the design of our
scheme. Section IV presents experimental results. Section
V concludes this paper, and the future work is discussed in
Section VI.

II. RELATED WORK

As stated, proxy servers could reduce the Internet latency
users perceived. Not surprisingly, how to better the perfor-
mance of proxy servers is an import issue, in particular
for busy environments where many users access Internet
simultaneously. A predictive proxy server can aid in the
amelioration of its performance. The idea of prediction and
prefetching has long been adopted in operating systems. The
huge speed difference between memory and disk noticeably
slows down the performance of filesystems. Early research
works had enabled operating systems to predict what files
running programs will access later and prefetch them from
disk to memory [11], [12]. Similarly, enabling proxy servers
to make future access prediction of web objects that users
may require could remedy the accompanying latency [1]–[3],
[5], [6], [13]. Some schemes used more complex techniques

such as Markov models and data mining to find out potential
access patterns of users, and then make predictions based on
those findings [7]–[9], [14]. In the meanwhile, it is common
that individual web pages contains multiple web objects
(such as hyperlinks). Consequently, web objects embedded
in web pages are good candidates for the proxy server to
prefetch them to the client requesting those web pages [2],
[5], [15].

It is desirable for proxy servers to keep hot web objects
cached in memory instead of in disk just like what regular
filesystems would do. Intelligent cache replacement algo-
rithms can help proxy servers realize this goal [16]–[19].
Some organizations set up multiple proxy servers working
together. As a result, sharing the contents among affiliated
proxy servers also helps their performance as well [20].

III. GROUPING BY USERS’ INTERESTS

In this section, we will explain how our model establishes
user interest groups based on offline learning and how to
make prediction accordingly. People often do not change
their interests within a short period of time. Generally speak-
ing, for a group of users with the same interest, it is logical
to infer that they will visit some popular websites related
to their common interest as the NBA example mentioned
earlier. Thus, web objects with high popularity in those
related popular websites will have a fairly good possibility
to be accessed by individual users within that interest group.

A. Grouping Scheme

As described, we do not need to train our model online.
We use web traces collected to train our model to establish
”interest groups” during the learning process. Our model
does not impose any minimum length on web traces, even
though a longer period of training trace could provide better
learning results as our experiments revealed.

The learning process consists of two steps. The first step
is, for every user (identified by IP) in the trace, we create an
interest group to record users sharing common interests with
that user. We define two users sharing the same interests if
both have visited at least twenty common websites. After
the first step, for each user, we will have one interest group
to record all other users sharing common interests with that
user. For convenience, we refer to each user as the ”host”
for his or her interest group, and view the other users in
the group as ”member users”. Of course, a user may not
have common interests with other users. When the first step
is done, for any given group, not all users in that interest
group share common interests among themselves. They only
share common interests with the ”host” of the group.

For the second step, for each group, we examine if all
users (except for the host of the group) in it share common
interests among one another. For instance, assume that there
are thirty-one users in a group hosted by a user A. For
each of the thirty member users in this group headed by the



user A, we will check how many other member users share
common interests with that member user. If the number is
less than 10% of total member users, that member user will
be removed from this group. Therefore, in this example, a
member user will be eliminated if that member user shares
common interests with fewer than three other member users
in this group. The main purpose of the second step is to
make sure that all users in the same group share common
interests with at least 10% of other member users.

Suppose twenty member users were removed from the
interest group headed by user A in the second step. After the
two processing steps, there are eleven (the user A and other
ten member users) users left in this group. Each of the ten
member users and the user A have a common set of websites
visited as observed in the first step. All websites from the
ten sets are collected and referred as the ”member websites”
of this interest group. After that, within the training traces,
all web objects from those ”member websites” are gathered
and ranked by their popularity (times of access). We refer
to them as the ”member web objects” of the interest group
hosted by the user A, and they will be the candidates of
web objects being predicted subsequently. Besides being the
host of his or her interest group, each user can also be the
”member user” of other interest groups. In fact, after the
two processing steps, one user can exist in multiple interest
groups simultaneously. The role of ”host” or ”member” does
not matter then.

The reason for us to use the number, 20, to decide if two
users share common interests is as follows. We assume that
users will visit the same websites related to their interests
at least once a week. A recent Nelson survey revealed that,
on average, a person visits 97 websites within a month [21].
We divided the number 97 by 4 and obtained a quotient
24.25, we then chose the number, 20, to evaluate if two users
have common interests. We also conducted experiments with
value of 30, instead of 20. The results for the outcome of
using 30 were only slightly worse than those of using 20.
Using the value of 30 means employing a more stringent
condition to check if two users share common interests.
Therefore, we would establish fewer interest groups as well
as fewer ”member websites” and ”member web objects” in
each interest group. As to the number, 10%, we did not
have strong theories behind that percentage. We used that
number as a minimum standard for a user to stay in an
interest group. Interestingly, we also tried to use 20%, and
we found that the performance of our model was not very
sensitive to that number either. We believed this was because
our model did not actually predict many member web objects
for each prediction as discussed later. Consequently, those
popular web objects predicted will not vary noticeably under
such circumstances.

B. Grouping Timing

Since our model performs the two learning steps offline,
we can do the training at anytime. Our experience showed
that it is not necessary to frequently retrain our model
in practice unless an excessive number of new users join
the service coverage of the proxy server. Our experiments
indicated that the proxy server could maintain its comparable
performance even it was trained weeks ago. Therefore, the
actual cost of keeping our model working appropriately is
much lower than that of predicting models requiring online
training.

IV. PERFORMANCE EVALUATION

To evaluate our model, we used real-life proxy traces
collected between October of 2010 and December of 2010
from one of the two main proxy servers at our university. The
proxy server was running Squid, a popular tool installed on
many proxy servers. We conducted simulation experiments
for each of the three months to examine how our model
performed for different sections of web traces. It would be
desirable if a predicting model has stable performance across
different periods of time. For each month, the traces of its
first ten days were used to train our model, while data for the
rest of that month were used to evaluate the performance of
our model. All non-cacheable records were filtered out from
the Squid log beforehand since the contents of non-cacheable
web objects, such as those dynamically generated, would
vary each time. The numbers of IPs recorded in each of the
three months were 2713, 1612, and 1606 correspondingly.
The numbers of cacheable web objects therein were around
9.4 million, 11 million, and 10 million respectively. Our goal
is to examine how much better our predicting model can help
the proxy server do its job. Therefore, instead of listing the
performance improvement for thousands of individual users
(IPs), we report the global performance difference in terms
of total numbers of hits collected from browsers on all users’
sites for cases with and without our prediction scheme.

A. Experimental Design

We mentioned earlier that a predicting model should not
predict and prefetch too many web objects at a time to clog
the network. The average size of a web object from web
traces between September of 2010 and February of 2011
at our institution was about 24.5 KB. It is common for
an environment with a bandwidth of 1 Gbit per second at
present time. This means a regular environment can handle
about 5350 (1 Gb / 24.5 KB) web objects per second.
Practically, not all users will stay online twenty-four hours
a day at the same time. To be conservative, let’s assume that
had been the case in our traces. Hence, we can afford about
two (5350 / 2713) web objects per person for every second,
translating into 120 (2 * 60) web objects per minute for
everyone. A study showed that the number of web objects in
an average web page was about 100 in November 2012 [22].



In other words, a user can request about 1.2 (120 / 100) web
pages per minute in our environment, which approximately
matches a recent Nelson survey reporting that the duration
of a web page viewed was about 65 seconds in May 2012
[21]. We want to point out again that the number, 1.2, was
calculated under the stringent assumption that the maximum
number of users, 2713, in our traces had simultaneously
stayed online twenty-four hours a day.

We set our predictive proxy server to predict and prefetch
as most 50 web objects each time during our simulation.
This means that when the proxy server received a webpage
request from a user, it predicted and prefetched totally up
to 50 most popular ”member web objects” from all interest
groups that user had joined, to the cache of the web browser
on that client’s site. As a reminder, the proxy server did not
always predict 50 web objects at a time. The number, 50,
just served as the upper limit. We were also interested in
exploring how the length of training period would affect the
performance of our model. We tested cases with different
lengths of training periods.

B. Experimental Results

The first set of experiments was conducted against the
trace data for October of 2010. We trained our model with
different learning periods all starting from October 1. Five
training periods with the lengths of two, four, six, eight, and
ten days were conducted separately. We wanted to examine
how our model reacted to different length of training.

After the training, we tested our model against individual
testing days including October 11 to October 15, October
20, and October 30 to observe how our model worked in
weeks after its training. A client’s request of a web object
can be either a hit or a miss from his or her local web
browser. The ”hit” requests from browsers of every client
site were added up to obtain the overall number of hit.
Similarly, the numbers of web objects requested for every
user were summed up to get the overall number of request.
We then divided the overall number of hit by the overall
number of request to acquire the overall hit ratio. Table
I lists overall hit ratios for different cases. The leftmost
column shows the testing days. The next column, NP (No
Prediction), represents the original situation where the proxy
server did not make any prediction. The next five columns
are for those with different training periods. Each testing
day holds two rows. The upper one shows the hit ratios for
corresponding training periods. The lower one represents the
relative performance improvement over the original situation
with no prediction, which was obtained by dividing the hit-
ratio difference (between cases with prediction and without
prediction) by the hit ratio without prediction.

For the training of a short 2-day trace, compared with
the original case with no prediction, our model improved
between 10.38% (testing day 10/11) and 29.51% (testing
day 10/12). For a given testing day, except for October 30,

Table I
HIT RATIOS AND IMPROVEMENT FOR TRACES OF OCTOBER 2010

testing NP 2-day 4-day 6-day 8-day 10-day
days training training training training training

10/1-2 10/1-4 10/1-6 10/1-8 10/1-10
10/11 49.76% 54.92% 55.73% 56.87% 57.43% 57.96%
(imp.) (10.38%) (12.01%) (14.29%) (15.42%) (16.48%)
10/12 27.76% 35.95% 36.25% 38.75% 40.18% 40.73%
(imp.) (29.51%) (30.59%) (39.61%) (44.76%) (46.72%)
10/13 28.49% 36.38% 36.69% 38.86% 40.10% 40.68%
(imp.) (27.70%) (28.77%) (36.39%) (40.75%) (42.77%)
10/14 28.52% 36.09% 36.35% 38.09% 39.29% 39.81%
(imp.) (26.55%) (27.48%) (33.57%) (37.76%) (39.59%)
10/15 27.03% 34.17% 34.43% 36.25% 37.23% 37.62%
(imp.) (26.45%) (27.40%) (34.13%) (37.76%) (39.18%)
10/20 28.87% 35.49% 35.76% 37.80% 38.76% 39.11%
(imp.) (22.92%) (23.86%) (30.92%) (34.22%) (35.45%)
10/30 27.86% 34.09% 33.03% 35.54% 36.18% 36.37%
(imp.) (22.37%) (23.00%) (27.57%) (29.89%) (30.56%)

0

10

20

30

40

50

60

70

NP 2 4 6 8 10

hi
t r

at
io

 (%
)

training period

Oct. 11
Oct. 12
Oct. 13
Oct. 14
Oct. 15
Oct. 20
Oct. 30

Figure 1. Test Traces: October 2010

our model did better with a longer training period. Take
the October 12 for example, the improvement began with
29.51% for a 2-day training, and ended with 46.72% for
a 10-day training. The high hit ratios for the October 11
draw our attention. We examined the data collected for that
day and found that the number of requests was about only
one-tenth of data volume for other testing days. We did
not know the exact reason. Our model performed better
with a longer period of training in general. However, the
performance difference among different training periods is
indeed not that much. In other words, our model can do
comparably well even if the training trace covers only a
short period of time. Figure 1 displays the results of Table
I. The X-axis lists periods with different training days. The
Y-axis represents the hit ratios from all testing days.

The second set of experiments was done like the first
set. The testing trace was for November of 2010, and we
trained our model with learning periods all starting from
November 1. Again, after the training, we tested our model
against individual testing days including November 11 to
November 15, November 20, and November 30. Table II
details the results. Basically Table II resembles what we saw
in Table I. Overall speaking, our model delivered higher hit
ratios when it was trained with periods covering more days.
Nevertheless, even with a training of 2-day trace, our model
can learn quickly and produced comparable results from a



Table II
HIT RATIOS AND IMPROVEMENT FOR TRACES OF NOVEMBER 2010

testing NP 2-day 4-day 6-day 8-day 10-day
days training training training training training

11/1-2 11/1-4 11/1-6 11/1-8 11/1-10
11/11 29.63% 36.74% 39.58% 41.42% 41.53% 42.31%
(imp.) (23.98%) (33.56%) (39.79%) (40.15%) (42.77%)
11/12 29.95% 36.30% 39.06% 40.65% 40.73% 41.33%
(imp.) (21.22%) (30.40%) (35.72%) (36.00%) (38.01%)
11/13 31.82% 37.76% 40.49% 41.93% 42.00% 42.49%
(imp.) (18.65%) (27.24%) (31.78%) (32.00%) (33.54%)
11/14 37.25% 44.26% 46.22% 47.63% 47.72% 48.05%
(imp.) (18.81%) (24.07%) (27.87%) (28.11%) (28.99%)
11/15 42.46% 48.36% 49.88% 51.43% 51.51% 51.83%
(imp.) (13.89%) (17.47%) (21.12%) (21.33%) (22.06%)
11/20 27.44% 32.54% 34.63% 35.59% 35.64% 35.97%
(imp.) (18.60%) (26.23%) (29.71%) (29.91%) (31.11%)
11/30 30.08% 35.04% 37.04% 37.98% 38.03% 38.31%
(imp.) (16.47%) (23.12%) (26.27%) (26.41%) (27.36%)

0

10

20

30

40

50

60

NP 2 4 6 8 10

hi
t r

at
io

 (%
)

training period

Nov.�11

Nov.�12

Nov.�13

Nov.�14

Nov.�15

Nov.�20

Nov.�30

Figure 2. Test Traces: November 2010

training of 10-day trace. Figure 2 shows the results of Table
II.

The third set of experiments was conducted in the same
way. The testing trace was for December of 2010, and we
trained our model with learning periods all starting from De-
cember 1. Testing days included December 11 to December
15, December 20, and December 30. Table III manifests
the outcome. The highest improvement rate was 51.37%
(testing day 12/11, 10-day training). Figure 3 plots the
numbers of this experiment. The results from all three sets
of experiments clearly demonstrate that our model can help
the proxy server make prediction of web objects possibly
accessed in the future to improve its performance. Moreover,
its performance did not seriously degrade in weeks after its
latest training. As we expected, our model could learn more
and does better from longer training. Nonetheless, it can still
do relatively well even when its training trace covers as short
as two days.

Logically, even for offline learning models should get
retraining once a while to update its knowledge. We were
interested in finding how long the effectiveness of the
training could last. For the October test case seen in Table
I, except for October 11, the performance actually did not
largely degrade even long after the training was done. Take
the 2-day training for example. The hit ratio of October 12
(10 days after the training) was 35.95%, while the ratio was

Table III
HIT RATIOS AND IMPROVEMENT FOR TRACES OF DECEMBER 2010

testing NP 2-day 4-day 6-day 8-day 10-day
days training training training training training

12/1-2 12/1-4 12/1-6 12/1-8 12/1-10
12/11 25.51% 32.69% 34.28% 34.46% 35.96% 38.61%
(imp.) (28.15%) (34.37%) (35.07%) (40.97%) (51.37%)
12/12 45.86% 51.63% 52.71% 52.79% 53.50% 55.62%
(imp.) (12.59%) (14.94%) (15.12%) (16.67%) (21.28%)
12/13 33.87% 40.70% 42.37% 42.64% 43.62% 46.87%
(imp.) (20.17%) (25.11%) (25.91%) (28.80%) (38.39%)
12/14 27.00% 33.78% 35.28% 35.40% 36.73% 39.30%
(imp.) (25.11%) (30.63%) (31.09%) (36.02%) (45.53%)
12/15 25.01% 32.08% 33.61% 33.75% 35.30% 37.61%
(imp.) (28.25%) (34.35%) (34.93%) (41.14%) (50.34%)
12/20 30.87% 36.36% 37.46% 37.61% 38.61% 40.10%
(imp.) (17.79%) (21.34%) (21.84%) (25.08%) (29.92%)
12/30 22.18% 26.88% 27.83% 27.89% 28.57% 29.68%
(imp.) (21.18%) (25.49%) (25.76%) (28.80%) (33.80%)

0

10

20

30

40

50

60

NP 2 4 6 8 10

hi
t r

at
io

 (%
)

training period

Dec.�11

Dec.�12

Dec.�13

Dec.�14

Dec.�15

Dec.�20

Dec.�30

Figure 3. Test Traces: December 2010

34.09% for October 30 (28 days after the training). The
numbers for the 10-day training were 40.73% (October 12)
and 36.37% (October 30) respectively. Similar results were
also observed in the November numbers seen in Table II. For
the 2-day training, the hit ratios were 36.74% (November
11) and 35.04% (November 30). For the 10-day training,
the numbers were 42.31% (November 11) and 38.31%
(November 30). The December test showed the trend as well.
The small performance variances among different number of
days away from the last training validate our observation that
users often do not alter their interests overnight.

We mentioned earlier that our model predicted at most
50 web objects for each prediction. However, this does
not mean our models always predicted and prefetched 50
web objects for each prediction during our experiments. We
picked nine testing days to calculate the ratio between the
number of web objects sent out (including requested and
predicted) and the number of web objects requested. The
results are presented in Table IV. It shows that, for each
web object requested, our model actually sent out between
7.91 (testing day 12/20, 2-day training) and 25.31 (testing
day 12/11, 10-day training) web objects, much fewer than
50. This means that our model would consume less network
bandwidth than expected in reality, which is a desirable
outcome.



Table IV
THE RATIO BETWEEN THE NUMBER OF WEB OBJECTS SENT AND THE

NUMBER OF WEB OBJECTS REQUESTED

testing 2-day 4-day 6-day 8-day 10-day
days training training training training training
10/11 10.67 13.33 15.24 15.50 15.89
10/15 17.94 18.42 22.29 23.52 23.91
10/20 16.26 16.85 21.39 22.82 23.28
11/11 14.62 20.87 22.17 22.26 22.68
11/15 11.15 15.18 16.24 16.41 16.78
11/20 12.81 18.76 19.81 19.91 20.29
12/11 15.84 19.39 19.47 21.71 25.31
12/15 14.78 18.00 18.12 20.52 24.00
12/20 7.91 10.93 11.05 12.72 14.82

V. CONCLUSIONS

As the Internet traffic getting busier than ever before, it is
imperative to use proxy servers to expedite the process of ob-
taining contents of required web pages for users. Researchers
had proposed different ways to make proxy servers smarter
in terms of making prediction for future requests of web
objects that users may need. However, most schemes require
online learning, which means they have to maintain and
update their models with realtime calculation to keep their
methods effective. Unfortunately, keeping online learning
could degrade the performance of proxy servers in practice.
We proposed a new model employing common interests
among users to predict and prefetch web objects users may
access in the future. Our model can do its learning process
offline, so it does not impose heavy calculating cost on proxy
servers like most previous models did. Through simulation
on real-life web traces we collected at our institution, our
model demonstrated that it can deliver good performance
even it just had training from a trace covering only two
days. Compared with the hit ratios that a regular proxy server
generated, our predicting model could help the proxy server
better its performance by up to 51.37%.

VI. FUTURE WORK

For our current design, the proxy server can predict
and prefetch at most 50 web objects to a client for each
prediction. One possible refinement we can do in the future
is to dynamically adjust the number of web objects predicted
each time according to the levels of traffic congestion in the
network. As a result, more web objects could be predicted
for users when the network is not busy, and vice versa. The
training and testing traces were collected at our university.
It will be great if we can conduct similar experiments on
traces collected from other domains such as those from ISPs
(Internet Service Providers) in the future.

REFERENCES

[1] W. Teng, C. Chang, and M. Chen, “Integrating web caching
and web prefetching in client-side proxies,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 16, pp. 444–
455, 2005.

[2] D. Duchamp, “Prefetching hyperlinks,” in Proceedings of the
2nd conference on USENIX Symposium on Internet Technolo-
gies and Systems - Volume 2. USENIX Association, 1999,
pp. 12–12.

[3] L. Fan, P. Cao, W. Lin, and Q. Jacobson, “Web prefetching
between low-bandwidth clients and proxies: potential and
performance,” in Proceedings of the 1999 ACM SIGMETRICS
international conference on Measurement and modeling of
computer systems, ser. SIGMETRICS ’99. ACM, 1999, pp.
178–187.

[4] T. Yeh and Y. Pan, “Improving the performance of the web
proxy server through group prefetching,” in Proceedings of
the 6th International Conference on Ubiquitous Information
Management and Communication. ACM, 2012, p. 81.

[5] K. Chinen and S. Yamaguchi, “An interactive prefetching
proxy server for improvement of www latency,” in Proc. INET
’97 Conference, 1997.

[6] M. Crovella and P. Barford, “The network effects of prefetch-
ing,” in INFOCOM ’98. Seventeenth Annual Joint Conference
of the IEEE Computer and Communications Societies. IEEE,
1998, pp. 1232–1239.

[7] B. Lan, S. Bressan, B. C. Ooi, and K.-L. Tan, “Rule-assisted
prefetching in web-server caching,” in Proceedings of the
ninth international conference on Information and knowledge
management. ACM, 2000, pp. 504–511.

[8] M. Deshpande and G. Karypis, “Selective markov models for
predicting web page accesses,” ACM Trans. Internet Technol.,
vol. 4, pp. 163–184, May 2004.

[9] R. R. Sarukkai, “Link prediction and path analysis using
markov chains,” Computer Networks, vol. 33, no. 1, pp. 377–
386, 2000.

[10] R. A. Jarvis and E. A. Patrick, “Clustering using a similarity
measure based on shared near neighbors,” Computers, IEEE
Transactions on, vol. 100, no. 11, pp. 1025–1034, 1973.

[11] J. Griffioen and R. Appleton, “Reducing file system latency
using a predictive approach.” in USENIX Summer, 1994, pp.
197–207.

[12] T. M. Kroeger, D. D. E. Long, and J. C. Mogul, “Exploring
the bounds of web latency reduction from caching and
prefetching,” in Proceedings of the USENIX Symposium on
Internet Technologies and Systems on USENIX Symposium on
Internet Technologies and Systems. USENIX Association,
1997, pp. 13–22.

[13] A. Balamash, M. Krunz, and P. Nain, “Performance analysis
of a client-side caching/prefetching system for web traffic,”
Computer Networks, vol. 51, no. 13, pp. 3673 – 3692, 2007.

[14] Q. Yang and H. H. Zhang, “Integrating web prefetching and
caching using prediction models,” World Wide Web, vol. 4,
pp. 299–321, 2001.

[15] B. D. Davison, “Predicting web actions from html content,” in
Proceedings of the thirteenth ACM conference on Hypertext
and hypermedia. ACM, 2002, pp. 159–168.

[16] C. Aggarwal, J. L. Wolf, and P. S. Yu, “Caching on the
world wide web,” IEEE Transactions on Knowledge and Data
Engineering, vol. 11, pp. 94–107, 1999.

[17] J. Shim, P. Scheuermann, and R. Vingralek, “Proxy cache
algorithms: design, implementation, and performance,” IEEE
Transactions on Knowledge and Data Engineering, vol. 11,
pp. 549–562, 1999.

[18] A. Balamash and M. Krunz, “An overview of web caching re-
placement algorithms,” Communications Surveys & Tutorials,
IEEE, vol. 6, no. 2, pp. 44–56, 2004.

[19] S. Jin and A. Bestavros, “Popularity-aware greedy dual-size
web proxy caching algorithms,” in Distributed computing
systems, 2000. Proceedings. 20th international conference on.
IEEE, 2000, pp. 254–261.

[20] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary
cache: a scalable wide-area web cache sharing protocol,”
IEEE/ACM Trans. Networking., vol. 8, pp. 281–293, June
2000.

[21] “http://www.nielsen.com/us/en/newswire/2012/may-2012-
top-u-s-web-brands-and-news-websites.html.”

[22] “http://www.websiteoptimization.com/speed/tweak/average-
web-page/.”


