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Abstract—OpenFlow is one of the most popular protocols to 

realize Software-Defined Networking. OpenFlow has attracted a 

great deal of interest because of its wide utility and applicability 

for automation of network management. While OpenFlow 

provides the ability to control a network using software, there is 

the risk of bugs occurring in the software that could cause 

erroneous network behavior. Therefore, improving the reliability 

of the network is very important. Model checking is a well-known 

technique to verify the correctness of distributed systems such as 

OpenFlow networks. However, it is difficult to apply it to this 

problem because model checking takes an exponential amount of 

time in relation to the scale of its target. Naïve model checking 

may take too much time, even to verify a toy network. We 

introduce an effective method for model checking of the 

OpenFlow network. Our method reduces the state-explosion 

problem with dynamic partial-order reduction and with state 

transition based on symbolic execution. We implemented a 

prototype for our method to evaluate it. The results indicated 

that our method completed model checking in less than 10% of 

the execution time of naïve depth first search model checking and 

in 31% of the execution time of an existing state-of-the-art tool. 

Keywords—Software-Defined Networking; SDN; OpenFlow; 

model checking; formal methods 

I.  INTRODUCTION 

A. OpenFlow 

OpenFlow [1] is the first standard to be accepted widely by 
both academia and industry for Software-Defined Networking 
(SDN). By using OpenFlow, we can automate the operation 
and management of networks with one centralized OpenFlow 
controller. With programs installed in the controller, networks 
become programmable and configurable more dynamically. 
We expect that a huge variety of programs written on an 
OpenFlow framework such as Trema [2] or NOX [3] will be 
developed by vendors or network administrators for almost all 
network operation and management functions in the future. 

B. Challenges of OpenFlow Verification 

Although networks become more flexible with the 
programs installed in the OpenFlow controller, there is the risk 
of bugs in the programs having an adverse effect on the 
networks’ behavior. Therefore, it is important to make such 
networks more reliable by identifying and fixing problems that 
occur in them. If OpenFlow programs developed by network 
administrators include bugs, ideally, those administrators 
should identify and fix the bugs themselves, although this is a 

difficult task. Therefore, some ways to automatically check 
the “correctness” of OpenFlow networks are necessary.  

Generally, the correctness of networks is tested with naïve 
tools such as ping and traceroute. However, it is difficult to 
make sure a network is operating rightly because networks are 
inherently distributed and asynchronous. OpenFlow networks 
have the same problem. For example, a delay of OpenFlow 
messages may cause unexpected behavior. Fig. 1 illustrates an 
example in which a packet is received by switch 2 before the 
installation of a new flow entry that should be installed in 
switch 2 before the packet reaches it. In this case, switch 2 
applies an old flow entry to the packet or sends a packet-in 
message to the controller unexpectedly, and the packet may 
then be processed in the wrong manner (e.g., forwarded to the 
wrong destination or dropped erroneously). Such problems 
occur only under certain event orderings, so they are hard to 
detect by general testing methods using the naïve tools (ping, 
traceroute, etc.). Thus, more rigorous and systematic methods 
are needed to verify the correctness of networks. 

Model checking [4] is a powerful technique for verifying 
distributed and asynchronous systems. It involves modeling a 
target system as a finite state machine and exploring it 
exhaustively to detect wrong states or paths. It enables all bugs 
in the model to be detected without any omissions. 

However, it is difficult to apply it simply to this problem 
because model checking takes an exponential amount of time 
in relation to the scale of the target system. This is called the 
“state-explosion problem.” In model checking of OpenFlow 
networks, two types of state-explosion problems occur; the 
first is caused by the massive number of packet patterns, and 
the second is caused by the massive number of orders of 
network events. OpenFlow switches and controllers can react 
to arbitrary packets based on their headers, which have a huge 
number of bit patterns. Model checking should cover all of 
these patterns. This is the first state-explosion problem. In 
addition, network events such as receiving packets can occur 
in any order due to communication delays. Model checking 
should also cover all variations in orders. This is the second 
state-explosion problem. These problems need to be resolved 
in order to apply model checking to OpenFlow. 

NICE [5] is an existing state-of-the-art tool for model 
checking of OpenFlow networks. When a tested OpenFlow 
model has bugs, NICE detects them quickly (in less than 1 
min. in most examples in [5]). However, when the tested 
OpenFlow model has no bugs and an exhaustive search is 
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Fig. 1.   Example of OpenFlow networks. 
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needed, NICE took a long time to complete the model 
checking in some cases (more than 4 days in the worst 
example in [5]). It is therefore necessary to reduce the time 
required for an exhaustive search. 

C. Contributions 

The contributions of our research are as follows. 

 SDPOR-DS: We propose a novel method based on 
dynamic partial-order reduction (DPOR) [6] to reduce 
the amount of space to be explored for the verification of 
distributed systems such as OpenFlow networks. 

 Symbolic state transition model of OpenFlow networks: 
We incorporate the concept of symbolic execution [7] 
into the state transition model of the OpenFlow network. 

We evaluated our method with a prototype. As a result, we 
were able to verify its effectiveness as follows: our method 
completed the model checking for the exhaustive exploration 
(i) in less than 10% of the execution time of the naïve depth 
first search (DFS) model checking and (ii) in 31% of the 
execution time of the state-of-the-art tool NICE. 

II. BACKGROUND 

A. Model Checking 

Model checking [4] is a method of verifying software or 
systems. It is used to verify whether such a verification target 
satisfies functional specifications or has rare errors caused by 
timing issues. This is done by modeling the verification target 
as a state machine and exhaustively exploring it. 

In the beginning of the process, model checkers (i.e., tools 
for model checking) execute a transition that is executable in 
an initial state, and obtain the next state. Model checkers 
iterate this execution of a transition until the state has no more 
transitions. If a state has multiple transitions, model checkers 
branch their exploration and execute all of them in order. 
Typically, model checkers explore the state space (i.e., the 
space of the state machine) by running a DFS algorithm. 

B. Symbolic Execution 

Symbolic execution [7] is a method that executes a 
program with symbolically expressed values for inputs, 
outputs, and variables instead of using concrete values. In 
symbolic execution, when a program reaches a branch (e.g., 

if flag == true then … else …), it executes each 

branch, memorizing the constraints of the branch (i.e. flag 

== true for then branch and flag == false for else 
branch). The conjunction of all memorized constraints by the 
end of the program path is just an executional constraint of it. 
If such input values that satisfy the executional constraint of a 
program path exist, it is possible to execute the program path. 
Constraint solvers, which are tools for quickly solving 

constraint expressions, have advanced remarkably in recent 
years, so the input values that satisfy the executional 
constraint can be calculated efficiently with them. 

III. RELATED WORK 

NICE [5] is an state-of-the art model checking tool for 
OpenFlow networks. To reduce state space, NICE calculates 
packet content in a symbolic execution in which an OpenFlow 
network model executes transitions along each different path, 
and NICE explores the state space using concrete packets 
created based on the calculation. Also, NICE uses heuristic 
search strategies for OpenFlow networks. However, NICE 
does not use any technique to omit redundant explorations 
based on the equivalency of state space (except what is clearly 
specified as “experimental”). As a result, NICE can detect 
bugs quickly, but if it has to explore the entire state space, 
NICE may take a long time to complete the model checking.  

From a verification point of view, some paths do not need 
to be explored. For example, when two different hosts both 
send packets to two different switches, exchanging the order 
of these two transitions (i.e., the events of a network modeled 
as a state machine such as sending or receiving packets) will 
not result in different network behavior. Even if such paths 
where only the order of these transitions is different are 
explored, the verification result will not change. Therefore, 
exploring only one of these paths is sufficient for the 
verification. We say “two transitions are independent” or “two 
transitions have no dependency” if exchanging the order of 
these transitions does not lead to another result. On the other 
hand, we say “two transitions are dependent” or “two 
transitions have dependency” if another result is produced. 
DPOR [6] analyzes dependencies between each two 
transitions on a path after the exploration of the path, and 
creates a backtrack point, which marks state space that should 
be explored, on a state where the first of the two transitions 
was executed only if they are dependent. When DPOR 
explores state space after backtrack points, it changes the 
order of the two dependent transitions from prior exploration. 
In this way, DPOR explores only state space that should be 
explored and omits exploration of paths where only the order 
of independent transitions is different. As a result, DPOR 
makes model checking more efficient. 

Model checking with DPOR does not stop the exploration 
even if it reaches a “visited state” (i.e., a state reached in a past 
exploration), since it cannot rightly analyze dependencies 
between a transition in an omitted space of the exploration and 
another on an explored path if it simply prunes the exploration 
after the visited state. Therefore, some inefficient cases of 
model checking exist because of the repeated exploration of 
the same state space. To address this problem, SDPOR [8] 
constructs a graph of the transition history of past exploration. 
If SDPOR reaches a visited state, it stops the exploration after 
the state and analyzes dependencies with the graph. As a result, 
SDPOR rightly calculates state space that should be explored 
and prunes redundant exploration. 

DPOR and SDPOR are used for model checking of multi-
thread programs. In contrast, DPOR-DS [9] is used for model 
checking of distributed systems. The basic approach used to 
prune the exploration is the same as in DPOR. DPOR-DS 



changes the way of creating backtrack points in order to adapt 
DPOR to verification models of distributed systems. DPOR-
DS defines the “happens-before relation” for the distributed 
system model differently from DPOR, and uses the results of 
analysis of this happens-before relation to determine the need 
for backtracking. The happens-before relation is the relation 
between two transitions that occur in the same order in any 
case in the model. For example, a transition of sending packet 
“p” always happens before another transition of receiving 
packet “p.” The happens-before relation is the order relation 
that is always satisfied in the model by its causal association, 
as in this example. DPOR-DS analyzes the happens-before 
relation of any two transitions on a path in addition to the 
dependency relation, and does not create a backtrack point if a 
happens-before relation exists between two transitions, even if 
a dependency relation exists between them. However, DPOR-
DS does not prune explorations after visited states, whereas 
SDPOR does. 

Header Space Analysis (HSA) [10] is a static-analysis 
technique for networks. HSA deals with a L-bit packet header 
as L-dimensional space, and models all processes of routers 
and middleboxes as box transfer functions, which transform  
subspaces of the L-dimensional space to other subspaces. We 
can detect network problems such as reachability failure or 
forwarding loops with the box transfer functions. HSA cannot 
detect problems occurring in the network where configurations 
of network devices dynamically change, whereas our method 
can detect these problems. 

IV. OUR OPENFLOW VERIFICATION METHOD 

A. Features of Our Method 

Our method uses model checking to verify the correctness 
of OpenFlow programs and has two features as follows: (i) a 
symbolic state transition model to reduce the state-explosion 
problem caused by massive numbers of packet patterns and 
(ii) SDPOR-DS to reduce the state-explosion problem caused 
by massive numbers of orders of network events. We discuss 
the details of these features in this section. 

B. OpenFlow Network Model for Verification 

We model an OpenFlow network composed of hosts, 
OpenFlow switches, and OpenFlow controllers. This network 
model executes a transition by sending and receiving packets 
and OpenFlow messages by these hosts, switches, and 
controllers (collectively called “node(s)”). We describe the 
modeling of each node below. 

We create a host model that only sends and receives 
packets. Actually, hosts can behave almost arbitrarily in a 
network, but it is hard to define and verify arbitrary behaviors. 
Thus, we model hosts as a simple transition system. The host 
model can execute two kinds of transitions as follows: (i) 
“sending a packet” and (ii) “receiving a packet.” 

We model switches as a transition system that processes 
packets based on the switch’s flow table and carries out 
actions based on the contents of an OpenFlow message sent 
from the controller. The flow table of a switch represents a 
state of the switch, and so a change of a switch’s flow table 
indicates a change of its state. The switch model can execute 

two kinds of transitions as follows: (i) “processing a packet”: 
A switch receives a packet and then applies a flow entry to it 
or sends a packet-in message to the controller, and (ii) 
“processing an OpenFlow message”: A switch receives an 
OpenFlow message sent from the controller and carries out 
actions based on its contents. 

We model the controller as a transition system that 
processes packet-in messages sent from switches. When the 
controller receives a packet-in message, it executes a packet-in 
handler defined in a program installed in it. Global variables 
of the program represent a state of the controller, so a change 
of a controller’s global variables indicates a change of the 
controller’s state. This controller’s transition system can 
execute one transition called “processing packet-in.” 

C. Symbolic Execution  of OpenFlow Network Model 

In our method, the contents of packets (e.g., IP address, 
MAC address) are expressed symbolically to reduce the state-
explosion problem occurring in model checking of OpenFlow 
networks, which are difficult to test with existing tools. We 
reduce the state space with the concept of symbolic execution, 
and stop exploring any non-existent executional path in the 
real network by analyzing constraints with solvers.  

We explain further with the example shown in Fig. 1. We 
assume here that host A sends packet “p” to host B, and that 
switch 1 had already installed flow entries to forward packets 
to host A or switch 2 according to the packets’ destination 
MAC address. Our method deals with packet contents 
symbolically with constraint expressions as in symbolic 
execution. The constraints limit the results of events in 
networks and also limit packet contents. In this example, 
because host A sends packet “p” to host B, the source MAC 
and IP address are those of host A, and the destination MAC 
and IP address are those of host B. Therefore, our method 
elicits the following four constraint expressions: 

p.Src_MAC_Address == hostA.MAC_Address … (i) 
p.Dst_MAC_Address == hostB.MAC_Address … (ii) 
p.Src_IP_Address == hostA.IP_Address … (iii) 
p.Dst_IP_Address == hostB.IP_Address … (iv) 

When switch 1 receives packet “p,” it is handled according 
to the flow table of switch 1. However, our method does not 
specify which flow entry is applied because “p” does not have 
a concrete value. Thus, our method branches out taking into 
account all possibilities of actions of switch 1. In this example, 
switch 1 installed two flow entries; one is to forward packets 
to host A, and the other is to forward packets to switch 2. Thus, 
the following three branches occur; the first one is where 
switch 1 applies the former flow entry, the second one is 
where switch 1 applies the latter flow entry, and the third one 
is where switch 1 sends packet-out message to the controller 
without applying any flow entry. By dealing with packet 
contents symbolically and branching the exploration in this 
manner, we do not have to distinguish states of which the 
details are insignificantly different with such branches, so our 
method can reduce the number of states that are explored.  

Furthermore, our method can omit the exploration of 
branches that do not actually exist by solving the constraints. 
In this example, the first and third branches do not actually 



occur. For instance, our method elicits the following constraint 
expression from the applied flow entry in the first branch: 

p.Dst_MAC_Address == hostA.MAC_Address … (v) 

Constraints (ii) and (v) are not satisfied simultaneously 
(except in odd networks where some hosts may have the same 
MAC address). Constraint solvers can solve these expressions 
quickly. Our method omits needless exploration with them, so 
it exhaustively and efficiently explores paths that can be 
executed in a real network without any overlapping state space.  

D. SDPOR-DS 

We introduce SDPOR-DS, which is an approach to reduce 
the state-explosion problem through massive ordering of state 
transitions and pruning the exploration of state space. 

1) Overview of SDPOR-DS 
SDPOR-DS prunes redundant exploration of model 

checking of distributed systems. Plainly speaking, SDPOR-DS 
is “DPOR-DS that prunes exploration after visited states.” It is 
based on DPOR-DS because it aims to verify distributed 
systems such as OpenFlow networks. Furthermore, SDPOR-
DS stops exploring a path if it reaches a visited state, which is 
the same idea as SDPOR. However, since DPOR-DS uses 
happens-before relations in addition to dependency relations to 
determine whether to explore state space, the graph SDPOR 
uses is not sufficient because the graph only contains the 
history with which SDPOR can analyze dependency relations. 
In SDPOR-DS, the graph contains the history with which it 
can analyze happens-before relations also.  

E. Details of SDPOR-DS 

1) Definitions 
Definition 1 (Dependency Relation). A dependency 

relation exists between transitions t1 and t2 if and only if a 
processing node of t1 is the same as t2 and either of the 
following is satisfied: (i) the state of a processing node 
changed in either transition t1 or t2, or (ii) the destination of 
any packet or OpenFlow message sent in transition t1 is the 
same as that in t2. 

Definition 2 (Happens-Before Relation). We denote t1   
t2 when a happens-before relation exists between transitions t1 
and t2 (t1 always occurs before t2). A happens-before relation 
exists between transitions t1 and t2 if and only if either of the 
following is satisfied: (i) a packet or OpenFlow message sent 
in transition t1 is the same as one received in transition t2, or 
(ii) t1   t3 and t3   t2. 

2) Algorithm of SDPOR-DS 
We describe here the algorithm of SDPOR-DS (Fig. 2). 

First, SDPOR-DS explores an arbitrary path (Line 3). Then, 
SDPOR-DS analyzes the dependency and happens-before 
relations on the path and identifies states that the exploration 
should backtrack to (Line 5). Next, the exploration restarts 
from the deepest backtrack point (Line 8). SDPOR-DS iterates 
this process until there is no backtrack point (Lines 4, 7). 

In explore_path (Fig. 2, Line 3), SDPOR-DS explores 
an arbitrary path of a verification model of an OpenFlow 
network. Transitions are executed from an initial state step-by-
step until it reaches a state as follows: (i) it has no transition 

that can be executed, or (ii) it was already visited in a past 
exploration, or (iii) it does not actually exist. Since constraint 
expressions of a state that does not exist cannot be satisfied, 
we can easily check whether a state exists using any constraint 
solver. In a real OpenFlow network, it never goes into such a 
state, so SDPOR-DS does not explore the space after a state.  

In the exploration process, a transition sequence of a path 
that is therein explored and a graph of the transition history of 
the entire exploration space are maintained and updated. They 
include what is necessary to analyze the dependency and 
happens-before relations such as packets that are sent and 
received, or the destination of the packets described in 1). 
After any transition, SDPOR-DS adds an element to the 
transition sequence and a node to the graph of the transition 
history. Adding an element to the transition sequence consists 
only of adding an element such as a list structure. Adding a 
node to the graph consists of adding a node n1 representing the 
latest transition t1 and connecting n1 and another node n2 
representing a transition t2 just before t1 with a directed edge 
(n2 to n1). These nodes are maintained as being related to 
states where transitions that the nodes represent are executed. 
When SDPOR-DS reaches a visited state, it connects nodes ni, 
representing transitions that can be executed from the visited 
state, and node n1, representing the latest transition t1 with 
directed edges (n1 to each ni). After the exploration of one path, 
SDPOR-DS analyzes the dependency and happens-before 
relations between each transition on the path with the 
transition sequence and the graph of the transition history. 

The analysis of the dependency and happens-before 
relations in SDPOR-DS has two phases: a phase using only 
the transition sequence (Fig. 3, Line 3) and a phase using the 
transition sequence and the graph of the transition history (Fig. 
3, Lines 4-6). In the former phase, SDPOR-DS takes any two 
transitions (Fig. 4, Lines 2, 4) and calculates whether the 
dependency and happens-before relations exist between the 
two transitions (Fig. 4, Line 6). If the dependency relation 
exists and the happens-before relation does not exist, SDPOR-
DS makes a backtrack point (Fig. 4, Line 7) to explore another 
path where the order of the two transitions switches. In the 
latter phase, SDPOR-DS takes nodes representing transitions 
that were executed on previous paths after the visited state that 
SDPOR-DS reached in the latest exploration (Fig. 5, Lines 11-
13), and calculates whether the dependency and happens-
before relations exist between any transition in the transition 
sequence and another transition taken from the graph of the 
transition history (Fig. 5, Line 7). Just as in the former phase, 
if the dependency relation exists, and the happens-before 
relation does not exist, SDPOR-DS creates a backtrack point 
(Fig. 5, Line 8). If SDPOR-DS did not reach any visited state 
in the latest exploration, the latter phase is skipped since past 
transitions are not executed on the latest path. 

In SDPOR-DS, the graph of the transition history stores all 
transitions that were executed in past explorations, so all 
transition sequences from any states can be obtained with this 
graph. Therefore, there is no need to explore the same space 
after any visited state while executing the same transitions 
again in order to analyze the dependency and happens-before 
relations. As a result, SDPOR-DS can omit explorations after 
visited states, which is a great advantage in terms of efficiency. 



1 def sdpor_ds(initial_state) 

2   branch = -1 

3   path, history_node = explore_path(empty_path, initial_state) 

4   loop { 

5     path = analyze_relation(path, branch, history_node) 

6     branch = path.get_branch 

7     return true if last_branch < 0 

8     path, history_node = explore_branch(path, branch) 

9   } 

10 end 

 

Fig. 2.   Pseudo code of top part of SDPOR-DS. 

1 def analyze_relation(path, branch, history_node) 

2   path_len = path.length 

3   path = analyze_with_path(path, branch) 

4   history_node.children.each { |e| 

5     path = analyze_with_history(path_len, path[0...path_len], e) 

6   } 

7   return path[0...path_len] 

8 end 

 
Fig. 3.   Pseudo code of start of relation analysis in SDPOR-DS. 

1 def analyze_with_path(path, branch) 

2   path.each_with_index { |e1, i| 

3     s = max(i + 1, branch) 

4     path[s..-1].each { |e2| 

5       hb_list = e2.hb_list 

6       if e1 and e2 are dependent && hb_list not include e1 

7         e1.add_branch(e2.transition) 

8       end 

9     } 

10   } 

11   return path 

12 end 

 

Fig. 4.   Initial phase of relation analysis in SDPOR-DS. 

1 def analyze_ with_history(path_length, path, history_node) 

2   path.add_path_element(history_node) 

3   path_len = path.length 

4   path[0...path_len].each_with_index { |e1, i| 

5     e2 = path[-1] 

6     hb_list = e2.hb_list 

7     if e1 and e2 are dependent && hb_list not include e1.tr 

8       e1.add_branche(e2.transition) 

9     end 

10   } 

11   history_node.children.each { |e| 

12     path = analyze_ with_history(path_len, path[0...path_len], e) 

13   } 

14   return path[0...path_length] 

15 end 

 
Fig. 5.   Latter phase of relation analysis of SDPOR-DS. 

V. PERFORMANCE EVALUATION 

We developed a prototype for the evaluation. It takes a 
network topology file of Trema [2] as input and automatically 
verifies whether a controller program causes forwarding loops 
and black holes of packets on the topology (These are built-in 
properties that our prototype verifies. It has the extendability 
for other properties that a user wants to verify additionally). 
We defined and implemented models of each network node in 
the prototype as built-in. The constraint solver we used was 
Yices [11]. All of our experiments were conducted on a 
machine set up as follows: OS: Ubuntu 12.04.3 LTS; CPU: 
Intel(R) Xeon(R) X5690 @ 3.47 GHz * 2; memory: 96 GB. 

The controller program was “MAC-learning switch.” With 
this program, the controller that receives a packet-in message 
registers the pair of a source MAC address and a receiving 
port number of a packet contained in the packet-in message. 
Then, if the pair of the destination MAC address and a port 
number of this packet is already registered in the controller, it 
sends flow-mod and packet-out messages to a switch that 
received the packet in order to prompt the switch to send the 

packet to the known destination. If not, the controller sends a 
packet-out message to the switch in order to make it flood the 
packet from all of its ports. The topology of this experimental 
example is shown in Fig. 1. We measured the prototype’s 
performance in verifying whether any problem happens in this 
example when host A sent some packets to host B and host B 
replied to host A. The results are given in TABLE I and II. 

First, we compared the results of SDPOR-DS and DFS. 
For the model where host A sends four packets, SDPOR-DS 
reduced the number of states and the execution time to 12% of 
that compared with DFS. Furthermore, the larger the scale of a 
model was, the greater the reduction rate was. This means that 
SDPOR-DS is scalable. With the model where host A sends 
five packets, we could not strictly compare SDPOR-DS and 
DFS because DFS did not finish its exploration within five 
days. However, we can estimate that SDPOR-DS takes less 
than 10% of the execution time compared with DFS. 

Next, we compare the results of our method and NICE. For 
the model where host A sends five packets, our method 
reduced the execution time to 31% compared with NICE. In 
our method, states that do not actually exist are created once 
and checked whether they exist. If not, the remaining steps of 
the exploration process such as dumping and loading of states 
are skipped. Consequently, the cost of exploring a state that 
does not exist is low compared with existing ones. Therefore, 
although many states followed by space that is not explored 
are created in our method internally, we expect that the 
exploration cost of our method is correlated with the number 
of states that actually exist. The rate of existing states among 
the total states is around 25%. For example, the number of 
existing states in an example where host A sends five packets 
to host B is 2,674,776. This is much smaller than the number 
of states with NICE, so this is thought to be the main reason 
why our method takes less time to execute than NICE. 

As a result, our method was very fast even when compared 
with NICE, so we made sure of its high efficiency. 

VI. BUG DETECTION 

In this section, we explain an example of bugs that our 
prototype can detect from OpenFlow networks. 



 

Fig. 6.   A topology that has a cycle. The packet route between the 

controller and any switch is omitted. 
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TABLE I.   COMPARISON OF NUMBER OF EXPLORED STATES. 

 

# packets SDPOR-DS DFS NICE 

2 989 2,311 510 

3 19,801 89,931 14,340 

4 426,970 3,432,569 353,150 

5 9,788,689 N/A 7,987,806 

 

TABLE II.   COMPARISON OF EXECUTION TIME [sec.]. 
 

# packets SDPOR-DS DFS NICE 

2 1.37 2.93 1.51 

3 21.15 113.65 59.07 

4 628.96 5528.53 2259.03 

5 22093.44 N/A 71156.64 

 

With the MAC-learning switch program described in 
section V, the controller sends a packet-out message that 
contains a FLOOD action operation in order to prompt a 
switch to forward the packet(s) using Spanning Tree Protocol 
(STP). We assume here that the controller program includes a 
bug that results in the controller sending packet-out that 
contains an ALL action operation instead of a FLOOD action 
operation. In ALL action, a switch forwards the packets from 
all of its ports except the port from which the switch received 
the packet. Therefore, if any cycle exists in the topology, a 
broadcast storm occurs. Our prototype can detect problems 
caused by such bugs. For example, if our prototype executed 
model checking of an OpenFlow network shown in Fig. 6 that 
was controlled by a program including the bug described 
above, our prototype would display the following message. 

The forwarding loop below was detected. 

  sw1@1 -> sw3@3 -> sw2@3 -> sw1@2 -> sw3@3 

The packet forwarding route where a broadcast storm 
occurs is shown in the second line. Switch names come before 

the @ symbol, and the physical port numbers come after @. 

As described above, even simple controller programs such 
as MAC-learning switch can include bugs that cause problems 
that have an impact on the entire network. With our method, 
we can verify whether the possibility of such a problem exists 
in a network, and if there is such a possibility, we can get a 
concrete idea of where the problem might occur. 

VII. CONCLUSION 

We proposed a new model-checking method of OpenFlow 
networks that tackles the state-explosion problem with 
SDPOR-DS and a symbolic state transition model. Further, we 
developed a prototype of our method and estimated its 
performance. It required only 12% of the execution time of 
naïve model checking with DFS for the model where a host 
sends four packets and another host receives the packets and 
replies to them. Furthermore, we can estimate that our method 
takes only less than 10% of the execution time compared with 
DFS for the model where a host sends five packets and 
another host receives the packets and replies to them. We also 
compared our method with NICE, a state-of-the-art tool for 

model checking of OpenFlow networks, and we confirmed 
that our method took only 31% of the execution time of NICE. 
In conclusion, our method can efficiently execute model 
checking for exhaustive exploration. We note that our method 
is not sound or complete, but we believe that our method is 
useful to detect bugs in OpenFlow networks effectively. 

In the future, we will improve the scalability of our method 
to apply it to actual networks. So we will introduce some 
heuristics based on domain knowledge of OpenFlow (e.g., 
FLOW-IR proposed in [5]) to the exploration of SDPOR-DS. 
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