
Efficient Model Checking of OpenFlow Networks

Using SDPOR-DS

Yutaka Yakuwa, Nobuyuki Tomizawa, Toshio Tonouchi

Knowledge Discovery Research Laboratories

NEC Corporation

Kawasaki, Kanagawa 211-8666, Japan

y-yakuwa@ap.jp.nec.com, n-tomizawa@ap.jp.nec.com, tonouchi@cw.jp.nec.com

Abstract—OpenFlow is one of the most popular protocols to

realize Software-Defined Networking. OpenFlow has attracted a

great deal of interest because of its wide utility and applicability

for automation of network management. While OpenFlow

provides the ability to control a network using software, there is

the risk of bugs occurring in the software that could cause

erroneous network behavior. Therefore, improving the reliability

of the network is very important. Model checking is a well-known

technique to verify the correctness of distributed systems such as

OpenFlow networks. However, it is difficult to apply it to this

problem because model checking takes an exponential amount of

time in relation to the scale of its target. Naïve model checking

may take too much time, even to verify a toy network. We

introduce an effective method for model checking of the

OpenFlow network. Our method reduces the state-explosion

problem with dynamic partial-order reduction and with state

transition based on symbolic execution. We implemented a

prototype for our method to evaluate it. The results indicated

that our method completed model checking in less than 10% of

the execution time of naïve depth first search model checking and

in 31% of the execution time of an existing state-of-the-art tool.

Keywords—Software-Defined Networking; SDN; OpenFlow;

model checking; formal methods

I. INTRODUCTION

A. OpenFlow

OpenFlow [1] is the first standard to be accepted widely by
both academia and industry for Software-Defined Networking
(SDN). By using OpenFlow, we can automate the operation
and management of networks with one centralized OpenFlow
controller. With programs installed in the controller, networks
become programmable and configurable more dynamically.
We expect that a huge variety of programs written on an
OpenFlow framework such as Trema [2] or NOX [3] will be
developed by vendors or network administrators for almost all
network operation and management functions in the future.

B. Challenges of OpenFlow Verification

Although networks become more flexible with the
programs installed in the OpenFlow controller, there is the risk
of bugs in the programs having an adverse effect on the
networks’ behavior. Therefore, it is important to make such
networks more reliable by identifying and fixing problems that
occur in them. If OpenFlow programs developed by network
administrators include bugs, ideally, those administrators
should identify and fix the bugs themselves, although this is a

difficult task. Therefore, some ways to automatically check
the “correctness” of OpenFlow networks are necessary.

Generally, the correctness of networks is tested with naïve
tools such as ping and traceroute. However, it is difficult to
make sure a network is operating rightly because networks are
inherently distributed and asynchronous. OpenFlow networks
have the same problem. For example, a delay of OpenFlow
messages may cause unexpected behavior. Fig. 1 illustrates an
example in which a packet is received by switch 2 before the
installation of a new flow entry that should be installed in
switch 2 before the packet reaches it. In this case, switch 2
applies an old flow entry to the packet or sends a packet-in
message to the controller unexpectedly, and the packet may
then be processed in the wrong manner (e.g., forwarded to the
wrong destination or dropped erroneously). Such problems
occur only under certain event orderings, so they are hard to
detect by general testing methods using the naïve tools (ping,
traceroute, etc.). Thus, more rigorous and systematic methods
are needed to verify the correctness of networks.

Model checking [4] is a powerful technique for verifying
distributed and asynchronous systems. It involves modeling a
target system as a finite state machine and exploring it
exhaustively to detect wrong states or paths. It enables all bugs
in the model to be detected without any omissions.

However, it is difficult to apply it simply to this problem
because model checking takes an exponential amount of time
in relation to the scale of the target system. This is called the
“state-explosion problem.” In model checking of OpenFlow
networks, two types of state-explosion problems occur; the
first is caused by the massive number of packet patterns, and
the second is caused by the massive number of orders of
network events. OpenFlow switches and controllers can react
to arbitrary packets based on their headers, which have a huge
number of bit patterns. Model checking should cover all of
these patterns. This is the first state-explosion problem. In
addition, network events such as receiving packets can occur
in any order due to communication delays. Model checking
should also cover all variations in orders. This is the second
state-explosion problem. These problems need to be resolved
in order to apply model checking to OpenFlow.

NICE [5] is an existing state-of-the-art tool for model
checking of OpenFlow networks. When a tested OpenFlow
model has bugs, NICE detects them quickly (in less than 1
min. in most examples in [5]). However, when the tested
OpenFlow model has no bugs and an exhaustive search is

This work was partly supported by the Ministry of Internal Affairs and
Communications, Japan.

Copyright IEICE - Asia-Pacific Network Operation and
Management Symposium (APNOMS) 2014

Fig. 1. Example of OpenFlow networks.

controller

host Bhost A switch 1 switch 2

Install

flow entry

Install flow entry

(delayed)
packet

needed, NICE took a long time to complete the model
checking in some cases (more than 4 days in the worst
example in [5]). It is therefore necessary to reduce the time
required for an exhaustive search.

C. Contributions

The contributions of our research are as follows.

 SDPOR-DS: We propose a novel method based on
dynamic partial-order reduction (DPOR) [6] to reduce
the amount of space to be explored for the verification of
distributed systems such as OpenFlow networks.

 Symbolic state transition model of OpenFlow networks:
We incorporate the concept of symbolic execution [7]
into the state transition model of the OpenFlow network.

We evaluated our method with a prototype. As a result, we
were able to verify its effectiveness as follows: our method
completed the model checking for the exhaustive exploration
(i) in less than 10% of the execution time of the naïve depth
first search (DFS) model checking and (ii) in 31% of the
execution time of the state-of-the-art tool NICE.

II. BACKGROUND

A. Model Checking

Model checking [4] is a method of verifying software or
systems. It is used to verify whether such a verification target
satisfies functional specifications or has rare errors caused by
timing issues. This is done by modeling the verification target
as a state machine and exhaustively exploring it.

In the beginning of the process, model checkers (i.e., tools
for model checking) execute a transition that is executable in
an initial state, and obtain the next state. Model checkers
iterate this execution of a transition until the state has no more
transitions. If a state has multiple transitions, model checkers
branch their exploration and execute all of them in order.
Typically, model checkers explore the state space (i.e., the
space of the state machine) by running a DFS algorithm.

B. Symbolic Execution

Symbolic execution [7] is a method that executes a
program with symbolically expressed values for inputs,
outputs, and variables instead of using concrete values. In
symbolic execution, when a program reaches a branch (e.g.,

if flag == true then … else …), it executes each

branch, memorizing the constraints of the branch (i.e. flag

== true for then branch and flag == false for else
branch). The conjunction of all memorized constraints by the
end of the program path is just an executional constraint of it.
If such input values that satisfy the executional constraint of a
program path exist, it is possible to execute the program path.
Constraint solvers, which are tools for quickly solving

constraint expressions, have advanced remarkably in recent
years, so the input values that satisfy the executional
constraint can be calculated efficiently with them.

III. RELATED WORK

NICE [5] is an state-of-the art model checking tool for
OpenFlow networks. To reduce state space, NICE calculates
packet content in a symbolic execution in which an OpenFlow
network model executes transitions along each different path,
and NICE explores the state space using concrete packets
created based on the calculation. Also, NICE uses heuristic
search strategies for OpenFlow networks. However, NICE
does not use any technique to omit redundant explorations
based on the equivalency of state space (except what is clearly
specified as “experimental”). As a result, NICE can detect
bugs quickly, but if it has to explore the entire state space,
NICE may take a long time to complete the model checking.

From a verification point of view, some paths do not need
to be explored. For example, when two different hosts both
send packets to two different switches, exchanging the order
of these two transitions (i.e., the events of a network modeled
as a state machine such as sending or receiving packets) will
not result in different network behavior. Even if such paths
where only the order of these transitions is different are
explored, the verification result will not change. Therefore,
exploring only one of these paths is sufficient for the
verification. We say “two transitions are independent” or “two
transitions have no dependency” if exchanging the order of
these transitions does not lead to another result. On the other
hand, we say “two transitions are dependent” or “two
transitions have dependency” if another result is produced.
DPOR [6] analyzes dependencies between each two
transitions on a path after the exploration of the path, and
creates a backtrack point, which marks state space that should
be explored, on a state where the first of the two transitions
was executed only if they are dependent. When DPOR
explores state space after backtrack points, it changes the
order of the two dependent transitions from prior exploration.
In this way, DPOR explores only state space that should be
explored and omits exploration of paths where only the order
of independent transitions is different. As a result, DPOR
makes model checking more efficient.

Model checking with DPOR does not stop the exploration
even if it reaches a “visited state” (i.e., a state reached in a past
exploration), since it cannot rightly analyze dependencies
between a transition in an omitted space of the exploration and
another on an explored path if it simply prunes the exploration
after the visited state. Therefore, some inefficient cases of
model checking exist because of the repeated exploration of
the same state space. To address this problem, SDPOR [8]
constructs a graph of the transition history of past exploration.
If SDPOR reaches a visited state, it stops the exploration after
the state and analyzes dependencies with the graph. As a result,
SDPOR rightly calculates state space that should be explored
and prunes redundant exploration.

DPOR and SDPOR are used for model checking of multi-
thread programs. In contrast, DPOR-DS [9] is used for model
checking of distributed systems. The basic approach used to
prune the exploration is the same as in DPOR. DPOR-DS

changes the way of creating backtrack points in order to adapt
DPOR to verification models of distributed systems. DPOR-
DS defines the “happens-before relation” for the distributed
system model differently from DPOR, and uses the results of
analysis of this happens-before relation to determine the need
for backtracking. The happens-before relation is the relation
between two transitions that occur in the same order in any
case in the model. For example, a transition of sending packet
“p” always happens before another transition of receiving
packet “p.” The happens-before relation is the order relation
that is always satisfied in the model by its causal association,
as in this example. DPOR-DS analyzes the happens-before
relation of any two transitions on a path in addition to the
dependency relation, and does not create a backtrack point if a
happens-before relation exists between two transitions, even if
a dependency relation exists between them. However, DPOR-
DS does not prune explorations after visited states, whereas
SDPOR does.

Header Space Analysis (HSA) [10] is a static-analysis
technique for networks. HSA deals with a L-bit packet header
as L-dimensional space, and models all processes of routers
and middleboxes as box transfer functions, which transform
subspaces of the L-dimensional space to other subspaces. We
can detect network problems such as reachability failure or
forwarding loops with the box transfer functions. HSA cannot
detect problems occurring in the network where configurations
of network devices dynamically change, whereas our method
can detect these problems.

IV. OUR OPENFLOW VERIFICATION METHOD

A. Features of Our Method

Our method uses model checking to verify the correctness
of OpenFlow programs and has two features as follows: (i) a
symbolic state transition model to reduce the state-explosion
problem caused by massive numbers of packet patterns and
(ii) SDPOR-DS to reduce the state-explosion problem caused
by massive numbers of orders of network events. We discuss
the details of these features in this section.

B. OpenFlow Network Model for Verification

We model an OpenFlow network composed of hosts,
OpenFlow switches, and OpenFlow controllers. This network
model executes a transition by sending and receiving packets
and OpenFlow messages by these hosts, switches, and
controllers (collectively called “node(s)”). We describe the
modeling of each node below.

We create a host model that only sends and receives
packets. Actually, hosts can behave almost arbitrarily in a
network, but it is hard to define and verify arbitrary behaviors.
Thus, we model hosts as a simple transition system. The host
model can execute two kinds of transitions as follows: (i)
“sending a packet” and (ii) “receiving a packet.”

We model switches as a transition system that processes
packets based on the switch’s flow table and carries out
actions based on the contents of an OpenFlow message sent
from the controller. The flow table of a switch represents a
state of the switch, and so a change of a switch’s flow table
indicates a change of its state. The switch model can execute

two kinds of transitions as follows: (i) “processing a packet”:
A switch receives a packet and then applies a flow entry to it
or sends a packet-in message to the controller, and (ii)
“processing an OpenFlow message”: A switch receives an
OpenFlow message sent from the controller and carries out
actions based on its contents.

We model the controller as a transition system that
processes packet-in messages sent from switches. When the
controller receives a packet-in message, it executes a packet-in
handler defined in a program installed in it. Global variables
of the program represent a state of the controller, so a change
of a controller’s global variables indicates a change of the
controller’s state. This controller’s transition system can
execute one transition called “processing packet-in.”

C. Symbolic Execution of OpenFlow Network Model

In our method, the contents of packets (e.g., IP address,
MAC address) are expressed symbolically to reduce the state-
explosion problem occurring in model checking of OpenFlow
networks, which are difficult to test with existing tools. We
reduce the state space with the concept of symbolic execution,
and stop exploring any non-existent executional path in the
real network by analyzing constraints with solvers.

We explain further with the example shown in Fig. 1. We
assume here that host A sends packet “p” to host B, and that
switch 1 had already installed flow entries to forward packets
to host A or switch 2 according to the packets’ destination
MAC address. Our method deals with packet contents
symbolically with constraint expressions as in symbolic
execution. The constraints limit the results of events in
networks and also limit packet contents. In this example,
because host A sends packet “p” to host B, the source MAC
and IP address are those of host A, and the destination MAC
and IP address are those of host B. Therefore, our method
elicits the following four constraint expressions:

p.Src_MAC_Address == hostA.MAC_Address … (i)
p.Dst_MAC_Address == hostB.MAC_Address … (ii)
p.Src_IP_Address == hostA.IP_Address … (iii)
p.Dst_IP_Address == hostB.IP_Address … (iv)

When switch 1 receives packet “p,” it is handled according
to the flow table of switch 1. However, our method does not
specify which flow entry is applied because “p” does not have
a concrete value. Thus, our method branches out taking into
account all possibilities of actions of switch 1. In this example,
switch 1 installed two flow entries; one is to forward packets
to host A, and the other is to forward packets to switch 2. Thus,
the following three branches occur; the first one is where
switch 1 applies the former flow entry, the second one is
where switch 1 applies the latter flow entry, and the third one
is where switch 1 sends packet-out message to the controller
without applying any flow entry. By dealing with packet
contents symbolically and branching the exploration in this
manner, we do not have to distinguish states of which the
details are insignificantly different with such branches, so our
method can reduce the number of states that are explored.

Furthermore, our method can omit the exploration of
branches that do not actually exist by solving the constraints.
In this example, the first and third branches do not actually

occur. For instance, our method elicits the following constraint
expression from the applied flow entry in the first branch:

p.Dst_MAC_Address == hostA.MAC_Address … (v)

Constraints (ii) and (v) are not satisfied simultaneously
(except in odd networks where some hosts may have the same
MAC address). Constraint solvers can solve these expressions
quickly. Our method omits needless exploration with them, so
it exhaustively and efficiently explores paths that can be
executed in a real network without any overlapping state space.

D. SDPOR-DS

We introduce SDPOR-DS, which is an approach to reduce
the state-explosion problem through massive ordering of state
transitions and pruning the exploration of state space.

1) Overview of SDPOR-DS
SDPOR-DS prunes redundant exploration of model

checking of distributed systems. Plainly speaking, SDPOR-DS
is “DPOR-DS that prunes exploration after visited states.” It is
based on DPOR-DS because it aims to verify distributed
systems such as OpenFlow networks. Furthermore, SDPOR-
DS stops exploring a path if it reaches a visited state, which is
the same idea as SDPOR. However, since DPOR-DS uses
happens-before relations in addition to dependency relations to
determine whether to explore state space, the graph SDPOR
uses is not sufficient because the graph only contains the
history with which SDPOR can analyze dependency relations.
In SDPOR-DS, the graph contains the history with which it
can analyze happens-before relations also.

E. Details of SDPOR-DS

1) Definitions
Definition 1 (Dependency Relation). A dependency

relation exists between transitions t1 and t2 if and only if a
processing node of t1 is the same as t2 and either of the
following is satisfied: (i) the state of a processing node
changed in either transition t1 or t2, or (ii) the destination of
any packet or OpenFlow message sent in transition t1 is the
same as that in t2.

Definition 2 (Happens-Before Relation). We denote t1
t2 when a happens-before relation exists between transitions t1
and t2 (t1 always occurs before t2). A happens-before relation
exists between transitions t1 and t2 if and only if either of the
following is satisfied: (i) a packet or OpenFlow message sent
in transition t1 is the same as one received in transition t2, or
(ii) t1 t3 and t3 t2.

2) Algorithm of SDPOR-DS
We describe here the algorithm of SDPOR-DS (Fig. 2).

First, SDPOR-DS explores an arbitrary path (Line 3). Then,
SDPOR-DS analyzes the dependency and happens-before
relations on the path and identifies states that the exploration
should backtrack to (Line 5). Next, the exploration restarts
from the deepest backtrack point (Line 8). SDPOR-DS iterates
this process until there is no backtrack point (Lines 4, 7).

In explore_path (Fig. 2, Line 3), SDPOR-DS explores
an arbitrary path of a verification model of an OpenFlow
network. Transitions are executed from an initial state step-by-
step until it reaches a state as follows: (i) it has no transition

that can be executed, or (ii) it was already visited in a past
exploration, or (iii) it does not actually exist. Since constraint
expressions of a state that does not exist cannot be satisfied,
we can easily check whether a state exists using any constraint
solver. In a real OpenFlow network, it never goes into such a
state, so SDPOR-DS does not explore the space after a state.

In the exploration process, a transition sequence of a path
that is therein explored and a graph of the transition history of
the entire exploration space are maintained and updated. They
include what is necessary to analyze the dependency and
happens-before relations such as packets that are sent and
received, or the destination of the packets described in 1).
After any transition, SDPOR-DS adds an element to the
transition sequence and a node to the graph of the transition
history. Adding an element to the transition sequence consists
only of adding an element such as a list structure. Adding a
node to the graph consists of adding a node n1 representing the
latest transition t1 and connecting n1 and another node n2
representing a transition t2 just before t1 with a directed edge
(n2 to n1). These nodes are maintained as being related to
states where transitions that the nodes represent are executed.
When SDPOR-DS reaches a visited state, it connects nodes ni,
representing transitions that can be executed from the visited
state, and node n1, representing the latest transition t1 with
directed edges (n1 to each ni). After the exploration of one path,
SDPOR-DS analyzes the dependency and happens-before
relations between each transition on the path with the
transition sequence and the graph of the transition history.

The analysis of the dependency and happens-before
relations in SDPOR-DS has two phases: a phase using only
the transition sequence (Fig. 3, Line 3) and a phase using the
transition sequence and the graph of the transition history (Fig.
3, Lines 4-6). In the former phase, SDPOR-DS takes any two
transitions (Fig. 4, Lines 2, 4) and calculates whether the
dependency and happens-before relations exist between the
two transitions (Fig. 4, Line 6). If the dependency relation
exists and the happens-before relation does not exist, SDPOR-
DS makes a backtrack point (Fig. 4, Line 7) to explore another
path where the order of the two transitions switches. In the
latter phase, SDPOR-DS takes nodes representing transitions
that were executed on previous paths after the visited state that
SDPOR-DS reached in the latest exploration (Fig. 5, Lines 11-
13), and calculates whether the dependency and happens-
before relations exist between any transition in the transition
sequence and another transition taken from the graph of the
transition history (Fig. 5, Line 7). Just as in the former phase,
if the dependency relation exists, and the happens-before
relation does not exist, SDPOR-DS creates a backtrack point
(Fig. 5, Line 8). If SDPOR-DS did not reach any visited state
in the latest exploration, the latter phase is skipped since past
transitions are not executed on the latest path.

In SDPOR-DS, the graph of the transition history stores all
transitions that were executed in past explorations, so all
transition sequences from any states can be obtained with this
graph. Therefore, there is no need to explore the same space
after any visited state while executing the same transitions
again in order to analyze the dependency and happens-before
relations. As a result, SDPOR-DS can omit explorations after
visited states, which is a great advantage in terms of efficiency.

1 def sdpor_ds(initial_state)

2 branch = -1

3 path, history_node = explore_path(empty_path, initial_state)

4 loop {

5 path = analyze_relation(path, branch, history_node)

6 branch = path.get_branch

7 return true if last_branch < 0

8 path, history_node = explore_branch(path, branch)

9 }

10 end

Fig. 2. Pseudo code of top part of SDPOR-DS.

1 def analyze_relation(path, branch, history_node)

2 path_len = path.length

3 path = analyze_with_path(path, branch)

4 history_node.children.each { |e|

5 path = analyze_with_history(path_len, path[0...path_len], e)

6 }

7 return path[0...path_len]

8 end

Fig. 3. Pseudo code of start of relation analysis in SDPOR-DS.

1 def analyze_with_path(path, branch)

2 path.each_with_index { |e1, i|

3 s = max(i + 1, branch)

4 path[s..-1].each { |e2|

5 hb_list = e2.hb_list

6 if e1 and e2 are dependent && hb_list not include e1

7 e1.add_branch(e2.transition)

8 end

9 }

10 }

11 return path

12 end

Fig. 4. Initial phase of relation analysis in SDPOR-DS.

1 def analyze_ with_history(path_length, path, history_node)

2 path.add_path_element(history_node)

3 path_len = path.length

4 path[0...path_len].each_with_index { |e1, i|

5 e2 = path[-1]

6 hb_list = e2.hb_list

7 if e1 and e2 are dependent && hb_list not include e1.tr

8 e1.add_branche(e2.transition)

9 end

10 }

11 history_node.children.each { |e|

12 path = analyze_ with_history(path_len, path[0...path_len], e)

13 }

14 return path[0...path_length]

15 end

Fig. 5. Latter phase of relation analysis of SDPOR-DS.

V. PERFORMANCE EVALUATION

We developed a prototype for the evaluation. It takes a
network topology file of Trema [2] as input and automatically
verifies whether a controller program causes forwarding loops
and black holes of packets on the topology (These are built-in
properties that our prototype verifies. It has the extendability
for other properties that a user wants to verify additionally).
We defined and implemented models of each network node in
the prototype as built-in. The constraint solver we used was
Yices [11]. All of our experiments were conducted on a
machine set up as follows: OS: Ubuntu 12.04.3 LTS; CPU:
Intel(R) Xeon(R) X5690 @ 3.47 GHz * 2; memory: 96 GB.

The controller program was “MAC-learning switch.” With
this program, the controller that receives a packet-in message
registers the pair of a source MAC address and a receiving
port number of a packet contained in the packet-in message.
Then, if the pair of the destination MAC address and a port
number of this packet is already registered in the controller, it
sends flow-mod and packet-out messages to a switch that
received the packet in order to prompt the switch to send the

packet to the known destination. If not, the controller sends a
packet-out message to the switch in order to make it flood the
packet from all of its ports. The topology of this experimental
example is shown in Fig. 1. We measured the prototype’s
performance in verifying whether any problem happens in this
example when host A sent some packets to host B and host B
replied to host A. The results are given in TABLE I and II.

First, we compared the results of SDPOR-DS and DFS.
For the model where host A sends four packets, SDPOR-DS
reduced the number of states and the execution time to 12% of
that compared with DFS. Furthermore, the larger the scale of a
model was, the greater the reduction rate was. This means that
SDPOR-DS is scalable. With the model where host A sends
five packets, we could not strictly compare SDPOR-DS and
DFS because DFS did not finish its exploration within five
days. However, we can estimate that SDPOR-DS takes less
than 10% of the execution time compared with DFS.

Next, we compare the results of our method and NICE. For
the model where host A sends five packets, our method
reduced the execution time to 31% compared with NICE. In
our method, states that do not actually exist are created once
and checked whether they exist. If not, the remaining steps of
the exploration process such as dumping and loading of states
are skipped. Consequently, the cost of exploring a state that
does not exist is low compared with existing ones. Therefore,
although many states followed by space that is not explored
are created in our method internally, we expect that the
exploration cost of our method is correlated with the number
of states that actually exist. The rate of existing states among
the total states is around 25%. For example, the number of
existing states in an example where host A sends five packets
to host B is 2,674,776. This is much smaller than the number
of states with NICE, so this is thought to be the main reason
why our method takes less time to execute than NICE.

As a result, our method was very fast even when compared
with NICE, so we made sure of its high efficiency.

VI. BUG DETECTION

In this section, we explain an example of bugs that our
prototype can detect from OpenFlow networks.

Fig. 6. A topology that has a cycle. The packet route between the

controller and any switch is omitted.

controller

host Bhost A sw1 sw2

packet

sw3host C
TABLE I. COMPARISON OF NUMBER OF EXPLORED STATES.

packets SDPOR-DS DFS NICE

2 989 2,311 510

3 19,801 89,931 14,340

4 426,970 3,432,569 353,150

5 9,788,689 N/A 7,987,806

TABLE II. COMPARISON OF EXECUTION TIME [sec.].

packets SDPOR-DS DFS NICE

2 1.37 2.93 1.51

3 21.15 113.65 59.07

4 628.96 5528.53 2259.03

5 22093.44 N/A 71156.64

With the MAC-learning switch program described in
section V, the controller sends a packet-out message that
contains a FLOOD action operation in order to prompt a
switch to forward the packet(s) using Spanning Tree Protocol
(STP). We assume here that the controller program includes a
bug that results in the controller sending packet-out that
contains an ALL action operation instead of a FLOOD action
operation. In ALL action, a switch forwards the packets from
all of its ports except the port from which the switch received
the packet. Therefore, if any cycle exists in the topology, a
broadcast storm occurs. Our prototype can detect problems
caused by such bugs. For example, if our prototype executed
model checking of an OpenFlow network shown in Fig. 6 that
was controlled by a program including the bug described
above, our prototype would display the following message.

The forwarding loop below was detected.

 sw1@1 -> sw3@3 -> sw2@3 -> sw1@2 -> sw3@3

The packet forwarding route where a broadcast storm
occurs is shown in the second line. Switch names come before

the @ symbol, and the physical port numbers come after @.

As described above, even simple controller programs such
as MAC-learning switch can include bugs that cause problems
that have an impact on the entire network. With our method,
we can verify whether the possibility of such a problem exists
in a network, and if there is such a possibility, we can get a
concrete idea of where the problem might occur.

VII. CONCLUSION

We proposed a new model-checking method of OpenFlow
networks that tackles the state-explosion problem with
SDPOR-DS and a symbolic state transition model. Further, we
developed a prototype of our method and estimated its
performance. It required only 12% of the execution time of
naïve model checking with DFS for the model where a host
sends four packets and another host receives the packets and
replies to them. Furthermore, we can estimate that our method
takes only less than 10% of the execution time compared with
DFS for the model where a host sends five packets and
another host receives the packets and replies to them. We also
compared our method with NICE, a state-of-the-art tool for

model checking of OpenFlow networks, and we confirmed
that our method took only 31% of the execution time of NICE.
In conclusion, our method can efficiently execute model
checking for exhaustive exploration. We note that our method
is not sound or complete, but we believe that our method is
useful to detect bugs in OpenFlow networks effectively.

In the future, we will improve the scalability of our method
to apply it to actual networks. So we will introduce some
heuristics based on domain knowledge of OpenFlow (e.g.,
FLOW-IR proposed in [5]) to the exploration of SDPOR-DS.

ACKNOWLEDGMENT

We would like to thank Prof. Hagiya at the Univ. of Tokyo,
Prof. Tanabe at NII (National Institute of Informatics), and the
members of Prof. Hagiya’s lab for their helpful comments.

REFERENCES

[1] N. McKeown et al., “Openflow: enabling innovation in campus
networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69-
74, Mar. 2008.

[2] H. Shimonishi et al., “Programmable Network Using OpenFlow for
Network Researches and Experiments,” in Proceedings of 6th
International Conference on Mobile Computing and Ubiquitous
Networking (ICMU 2012), 2012, pp. 164-171.

[3] N. Gude et al., “Nox: Towards an operating system for networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105-110, Jul.
2008.

[4] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, “Model checking.”
Cambridge, MA, USA: MIT Press, 1999.

[5] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford, “A nice
way to test openflow applications,” in Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, ser.
NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 127-140.

[6] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” SIGPLAN Not., vol. 40, no. 1, pp. 110-121,
Jan. 2005.

[7] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385-394, Jul. 1976.

[8] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby, “Efficient
stateful dynamic partial order reduction,” in Proceedings of the 15th
International Workshop on Model Checking Software, ser. SPIN’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 288-305.

[9] M. Yabandeh and D. Kostic, “DPOR-DS: Dynamic Partial Order
Reduction in Distributed Systems,” Tech. Rep., 2009. [Online].
Available: http://infoscience.epfl.ch/record/139173/files/paper_2.pdf

[10] P. Kazemian, G. Varghese, and N. McKeown, “Headerspace analysis:
Static checking for networks,” in Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 113-126.

[11] B. Dutertre and L. de Moura, “The Yices SMT solver,” Aug. 2006.
[Online]. Available: http://yices.csl.sri.com/tool-paper.pdf

