
 Network-Wide Traffic Visibility in OF@TEIN SDN

Testbed using sFlow

Shafqat Ur Rehman

 Dept. of Computer Sci. and Eng.

Air University

Islamabad, Pakistan.

shafqat.rehman@gmail.com

Wang-Cheol Song
*

Dept. of Computer Eng.

Jeju National University

Jeju, Korea

kingiron@gmail.com

Mingoo Kang

Division of Info. and Telecom.

Hanshin University

OSAN-SI, South Korea

kangmg@hs.ac.kr

Abstract—This paper provides insights into the traffic flow

monitoring system of OF@TEIN (OpenFlow@Trans Eurasia

Information Network) testbed. OF@TEIN is software defined

networking (SDN) testbed adapted by KOREN (KOrea advanced

REsearch Network) and integrated with the research and

education networks of several Asian nations including Japan,

Malaysia, Thailand, Vietnam, Philippine, etc. Traditional traffic

monitoring solutions such as NetFlow, RSPAN ports, Network

Packet Brokers (NPBs) can't provide network-wide visibility in

OF@TEIN because OF@TEIN is a large multi-tenant testbed

deployed over high speed research networks across several

countries. Therefore, we have implemented a new sFlow-based

flow monitoring system that is tailored to OF@TEIN

requirements and can provide real-time L2 to L7 network wide

visibility. OF@TEIN uses SDN-based network virtualization to

slice the network among multiple concurrent experimenters.

Machines in a network slice (or VLAN) communicate with each

other using GRE tunnels. Our traffic monitoring system enables

monitoring flow spaces of VLANs as well as physical provider

network. It utilizes northbound interfaces (NBIs) exposed by

sFlow-RT analytics engine and FloodLight SDN Controller. It

periodically fetches flows statistics from sFlow-RT and stores

them in time-series format in Whisper RRD database. Graphite

real-time charting tool is used to plot the statistics stored in

Whisper.

Index Terms—SDN, OF@TEIN, OpenFlow, sFlow, sFlow-RT,

Visibility.

I. INTRODUCTION

 Lack of visibility into today's high speed business critical

networks is a major issue. Network engineers have struggled

with monitoring traffic flows through their networks. They

have suffered from the limitations of conventional traffic

visibility methods such as port mirroring/SPAN (switch port

for analysis) and TAP (Test Access Point). Since early 90s,

SPAN(mirror) ports have been widely used to direct packets

from any or all ports of a switch/router to a collector (through a

single port) for analysis. However, typical SPAN ports can't

handle full duplex (FDX) and VLAN monitoring is

problematic. There is no guarantee that all the traffic required

for proper analysis would be captured. Under specific load

conditions, the Ethernet switch treats SPAN data with lower

priority than regular traffic and the mirrored frames are

arbitrarily discarded [1]. Moreover, SPAN port technology

does not scale to today's Gigabit Ethernet (GbE) networks e.g.,

FDX Gigabit and 10 Gigabit networks. Routers/switches

cannot replicate this amount of traffic to the SPAN port at line-

rate in real time. SPAN ports can be useful only in low

throughput scenarios. An alternative to SPAN ports are

network taps. A tap installed between two points A and B in

the network enables a third party to get a copy of all the traffic

between points A and B passing through the tap.

 In traditional systems, a monitoring appliance must be

directly connected to a tap or SPAN port. This method makes

provisioning network-wide traffic costly, cumbersome and

inflexible as it would require installing monitoring appliances

at each network segment. Typically, only a small segment of

the traffic in a large network can be monitored this way.

Network packet brokers (NPBs) are usually used to aggregate

traffic from multiple monitoring devices and send it to analysis

tools. However, this solution is costly and inflexible especially

for high-speed 10/40 Gbps or future 100 Gbps networks as it

makes almost impossible for tools to ingest resulting

humongous data [8].

 Netflow can provide high-level visibility into traffic flow

but lacks the details for deep packet analysis. It is an

aggregation technology and a single NetFlow v5 UDP

datagram can contain up to 30 flows. However, because of its

aggregation, we can get only a few details such as source and

destination interfaces/ports, source and destination addresses,

protocol, total packets, total bytes, flow start and end times, etc.

We require high-end routers and switches to send NetFlow data.

Sending NetFlow data can overload network resources already

stretched thin. It does not support monitoring LAN and VLAN

traffic.

 Because of the limitations of traditional traffic monitoring

technologies, there is a lot of interest in SDN as an alternative

and far more flexible and scalable way of monitoring high-

bandwidth networks especially data center networks [2] [7].

SDN systems use OpenFlow and sFlow enabled commodity

switches with a sophisticated software-based centralized

controller [5] which enables network engineers to monitor and

engineer network traffic in new ways. These OpenFlow

switches are connected to traffic analysis tools such as sFlow-

RT [3], sFlowTrend, Ganglia, etc. The network of sFlow

enabled switches exports sFlow measurement datagrams to one

or more collectors. sFlow collectors enable an SDN application

to gain visibility into the traffic across the network. sFlow and
* Corresponding Author

Copyright IEICE - Asia-Pacific Network Operation and
Management Symposium (APNOMS) 2014

OpenFlow [4] together provide complementary functions for

software defined network environments.

 Rest of the paper is organized as follows. In Sections II, III

and IV, SDN and sFlow technologies in the context of flow

monitoring are described. In section V, we provide details of

OF@TEIN flow monitoring system. In section VI, we discuss

demonstration of the system. Section VII concludes the paper.

II. BACKGROUND

Traditional network devices perform two types of functions.

 The data plane of the device looks up routing table to

decide where to forward packets. It carries user data and

uses dedicated ASICSs forward data packets.

 The control plane of the device carries control traffic

originated from (or destined to) a network device. It makes

decision about where user traffic should be sent. It takes

care of tasks such as building routing table/spanning tree,

exporting flow statistics, and more. It is the brains of the

network and is implemented in software.

 Software defined networking (SDN) separates the network

Data Plane and Control Plane, permitting external software to

monitor and control network resources. Open Southbound

APIs like sFlow and OpenFlow are an essential part of this

separation, connecting network devices to external controllers,

which in turn present high level Open Northbound APIs to

SDN applications as shown in Figure 2 [2]. This makes

network management and control much more flexible because

there are one or few control planes to configure. Network

engineers have complete control over the network traffic and

can automate orchestration of network services such as

bandwidth reservation, load balancing, traffic differentiation,

DDoS mitigation, etc.

Business
Application

Business
Application

SDN Controller

Northbound APIs

Southbound APIs

Traditional Networking Software Defined Networking

Network
Devices

LegendControl Plane Data Plane Controller Agent

Fig. 1. Traditional vs. Software Defined Networking

 As shown in Figure 1, in traditional network architecture,

data plane and control plane both reside on the network device.

Traffic forwarding rules are set on each device. Network

devices do not have visibility of the entire network. In SDN

architecture, control plane is taken away from the network

device and moved to a centralized controller. The controller

has visibility to the entire network and enables network

engineers to make forwarding rules based on information about

the entire network. Controller communicates policies/rules to

the devices via controller agent (which resides in each network

device) using a standard protocol usually OpenFlow.

Controller exposes northbound APIs that allow business

applications to communicate with the controller. In short, SDN

consists of four components: controller agent, OpenFlow based

southbound APIs, SDN controller and RESTful northbound

APIs. Control layer communicates with data layer using

OpenFlow and business applications communicate with the

control plane using northbound APIs.

 The key benefit of SDN is that it allows business

applications to program the network behavior to optimize its

performance. SDN is a disruptive technology with far reaching

impact on network management and control.

III. FLOW MONITORING USING SFLOW

Switches are configured to use sFlow and OpenFlow

protocols to communicate with the sFlow Analytics engine

(e.g., sFlow-RT [3]) and OpenFlow controller (e.g., Floodlight

[4]) respectively in the control plane. Control plane software

such as sFlow and OpenFlow controller use Open Northbound

APIs to provide summary statistics and control functionality to

SDN applications such as Load Balancer, DDoS, etc.

Fig. 2. SDN (Software Defined Networking) Stack

Fig. 3. sFlow Agent embedded in a switch/router

The OpenFlow protocol enables SDN Controller running

on a server to gather topology information of a network of

switches and configure the forwarding behavior of these

switches. SDN controller builds a graph based model of the

network and runs a sophisticated routing algorithm to decide

the path of flows through the network. Flow routes decided by

the controller are added to the forwarding tables of the switches

using the OpenFlow protocol. The sFlow standard is

implemented in the switches using a separate ASIC

(Application Specific IC) which allows for real time network-

wide visibility in the traffic flows. Together, sFlow and

Openflow can be used to provide an integrated flow monitoring

system where OpenFlow controller can be used to define flows

to be monitored by sFlow. Furthermore, metrics from sFlow

can be used as feedback by an SDN application to control the

forwarding behavior in the switches.

IV. SFLOW TRAFFIC SAMPLING TECHNOLOGY

Before sFlow is a multi-vendor sampling technology

embedded within switches and routers. It provides the ability

to continuously monitor application level traffic flows at wire

speed on all interfaces simultaneously. The sFlow Agent is a

software process that runs as part of the network management

software within a device as shown in Figure 4. sFlow agent

combines interface counters and flow samples into sFlow

datagrams that are sent across the network to an sFlow

Collector. Packet sampling is typically performed by the

switching/routing ASICs, providing wire-speed performance.

The state of the forwarding/routing table entries associated

with each sampled packet is also recorded.

 Using sFlow, traffic samples can be collected from wide

range of network devices such as open virtual switches (OVS),

physical switches, hosts, etc. sFlow monitoring can be

configured on all interfaces of the device with little overhead

and sampling rate for each link can be decided according to

the monitoring policy.

 sFlow agents in network devices use random sampling

according to the defined sampling rate and therefore, can be

used to monitor high speed networks (Gbps speeds and higher)

with quantifiable accuracy. The Sampled data is sent as UDP

packets to the specified host and port where sFlow collector

software computes summary statistics and possibly display the

results graphically.

 Figure 4 shows the basic elements of the sFlow system.

sFlow Agents throughout the network continuously send a

stream of sFlow Datagrams to a central sFlow Collector where

they are analyzed by an analytics engine to produce a rich, real-

time, network-wide view of traffic flows.

 A widely used tool to process sFlow packets received from

the network devices is sFlow-RT. It enables real-time

visibility into software defined networks. sFlow-RT sits in the

control plane of the SDN stack. It converts the received

datagrams into actionable metrics or summary statistics based

on the flows as defined by the user. A flow of traffic is a set of

packets with a common property, known as the flow key,

observed within a period of time. The flow key is usually

specified by fields from the packet header, such as the IP

source and destination address and TCP/UDP port numbers.

Flow names are usually used as metrics which are

programmatically accessible through RESTful Northbound

APIs. Any language that supports HTTP request messages

(Perl, Python, Java, Java script, bash, etc.) can be used to

retrieve metrics from sFlow-RT. sFlow-RT statistics can be

retrieved in JSON format. JSON encoded text based results

are easy to read and widely supported by programming tools.

Following URL is used to retrieve JSON encoded metrics

from sFlow-RT:

 http://Server:8008/metric/agents/metrics/json?filter

 where server is the host running sFlow-RT, agents are

semicolon separated list of host addresses or names, or ALL to

include all hosts, metrics are comma separated list of metrics

to retrieve and filter is a filter to further restrict the hosts to

include in the query.

Fig. 4. sFlow Agents and Collector

V. TRAFFIC VISIBILITY IN OF@TEIN TESTBED

 In OF@TEIN, sFlow agent is embedded in OpenFlow

enabled physical and virtual network devices. sFlow is

configured to capture packets according to a specified

sampling rate. It sends samples in the form of measurement

datagrams to sFlow-RT. sFlow-RT is real-time analytics

engine. sFlow-RT processes the stream of measurement

datagram from sFlow in real-time and, therefore, provides

real-time summary statistics to application via northbound

REST APIs. OF@TEIN employs FlowVisor proxy to

create per user slices or virtual networks. FlowVisor acts as

a proxy between physical switches and multiple OpenFlow

controllers. Each OpenFlow controller controls flows

within its own slice. FlowVisor slice the network resources

such as link bandwidth, maximum number of forwarding

rules, topology and fraction of switch/router CPU.

OF@TEIN flow monitoring system supports monitoring of

per slice FlowSpace. An experimenter can monitor her

own FlowSpace while network administrator can monitor

all flowspaces.

 Figure 5 demonstrates the data, control and application

layers of the current version of OF@TEIN flow monitoring

system. We use sFlow-RT as sFlow collector and analytics

engine. It receives a continuous stream of sFlow datagrams

from network devices and converts them into actionable

metrics that are accessible through REST APIs. REST APIs

makes it easy for each application to configure flows,

retrieve metrics, set thresholds, and receive notifications.

sFlow Monitoring

Client

Performance

Dashboard

Control

Plane

sFlow Enabled

Network Devices

Northbound API

Data

Plane

RRD

(Round Robin Db)

Fig. 5. sFlow monitoring system in OF@TEIN Testbed

 We developed following python programs: parse_flows,

submit_flows, parse_metrics and statistics. Users define

traffic flows using xml according to a schema. parse_flows

parses theses flows, converts xml flow definitions to JSON

flow definitions and builds an index with host URL as key and

JSON flow definition as value. Then submit_flows program is

invoked to push the flow definitions to sFlow-RT one by one

using the REST commands stored in the index. Summary

statistics i.e., metrics against the flow definitions are specified

again using xml. parse_metrics parses the xml description

and builds a REST command that is used to fetch statistics in

JSON format from the sFlow-RT Analytics Engine. statistics

is used internally by parse_metrics to make the REST API call

using 'requests' python package and fetch the metrics from

sFlow-RT. statistics also translates metrics results into {name,

value, time} tuples and feeds them to Graphite's whisper

database [6]. Whisper is a fixed-sized Round Robin Database

similar in design to RRDtool and only stores time-series

numeric data. statistics.py corresponds to sFlow2Graphite in

Figure 5. Graphite Webapp is used to render plots using the

time-series data from whisper. Graphite Webapp provides a

dashboard for retrieval and visualization of our metrics.

A. Multi-tenancy and FlowSpace Monitoring

 OF@TEIN is a multi-tenant testbed which allows data

plane resource to be shared among multiple experimenters.

This is achieved by flowspace-level virtualization using

FlowVisor. VMs in tenant networks can reside on physical

servers deployed across various sites in Korea as well as sites

in Japan, Philippine, Thailand, Malaysia, Indonesia, etc.

Nodes distributed at various sites are connected via L3

networks. To allow L2 connectivity between these nodes, we

have used GRE tunneling. GRE tunnels are created using

software-based OVS (Open vSwitch) as well as hardware-

based NetFPGA solutions. Figure 6 shows multiple

tenant/virtual networks typical of real-world concurrent

experiment slices on top of OF@TEIN physical substrate. An

experimenter gets topology visualization and flowspace

visibility of her slice(s). Testbed administrators on the other

hand can monitor all the overlay tenant networks as well as

underlay physical network. In Figure 6, topology visualization

is provisioned using NetOpen RA UI developed by GIST,

South Korea. However, a new visualization UI is in progress.

Fig.6.Virtual playgrounds (or tenant networks) in OF@TEIN

B. Visibility into GRE Tunnels

In OF@TEIN, VMs in a tenant network (or virtual

playground) are spread across public WAN. However, these

VMs are mostly assigned private IP addresses that are not

routable over the Internet. To provide a LAN connectivity

illusion between these VMs, we use GRE (Generic Routing

Encapsulation) to encapsulate tenant network host packets in

routable IP packets. We use OVS (Open vSwitch) to

encapsulate traffic between hosts via GRE tunnels and hence

create overlay user networks. Note that OF@TEIN is managed

and orchestrated as a cloud using OpenStack as the cloud OS.

OpenStack uses GRE tunneling functionality of OVS to isolate

different tenant networks from one another.

sFlow enables us to monitor traffic flows through GRE

tunnels. Any networking device, virtual or physical, installed

between endpoints of a GRE tunnel can capture tunneled

packets using sFlow. However, OVS that hosts a tunnel

endpoint cannot capture GRE encapsulated packets because

packets are captured before they enter the tunnel.

C. Flows Definition

The Users can define the flows using xml data model as

given below:
<?xml version="1.0"?>

<flows>

 <!-- Flow keys are a set of comma delimited packet attributes -->

 <flow name="tcp1"

 keys = "ipsource,ipdestination,tcpsourceport,tcpdestinationport"

 value="frames"

 filter="ipsource=192.168.1.1&ipdestination=192.168.1.2"

/>

</flows>

 A flow is defined using name, keys, value and optionally

filter attributes.

D. Visualization o f flow statistics

 We use Graphite Dashboard to provide real time visibility

into flows across OF@TEIN testbed. When the network

engineer opens the graphite web interface, he shall see two

panels as shown in Fig. 7.

Fig. 7. Flow visualization using Graphite

Left panel is taken up by the browser tree. Browser tree

allows her to select metrics to show on a real-time graph in the

right panel called composer. To add a new graph directly, she

selects a metric series in the browser tree, and a graph for that

value is added to the graph panel. Alternatively, if a graph for

that metric series already exists, it will be removed.

E. sFlow Monitoring Methodology

 The flow monitoring application in OF@TEIN software

defined tested goes through following steps to deliver real

time network visibility. The workflow is also demonstrated in

Fig. 8.

 Get Topology Info: SDN Application gets topology

information based on LLDP (Link Layer Discovery

Protocols). The information comprises both DIRECT and

TUNNEL links.

 Build Topology: SDN Application uses Avior GUI to

show a graph of the network topology.

 Define Flows: Create, delete or modify flow rules in

OpenFlow switches. Create, delete or modify flow

definitions in sFlow-RT Analytics Engine.

 Get Metrics: Fetch metrics (i.e., flow statistics and

interface counters) periodically from sFlow-RT.

 Plot Metrics: Feed metrics to Graphite for generating

graphs of the metrics being monitored.

Fig. 8. Flow-space monitoring methodology using SDN

Metrics

VMVM

. . .

FlowVisor FlowSpace
Slices

REST API

sFlow-RT

Flow Definitions

Metrics

Flow Definitions

Flow Monitoring
App

sFlow2Graphite

Graphite Dashboard

Whisper RRD Db

Graphite Plotting
Tool

VMVMVM

Mgmt/Worker VMs

Capsulator (OVS)

HP OF Switch

Port # 3

Port # 4

VMVMVM

Mgmt/Worker VMs

Capsulator (OVS)

HP OF Switch OpenFlow

sFlow

Tunnel IP:
192.168.16.10

Tunnel IP:
192.168.16.11

GRE Tunnel Jeju Univ.GIST

sFlow Monitoring System FlowSpace: 192.168.16.0/24

Fig. 9. OF@TEIN Monitoring System Demo Setup

VI. SYSTEM EVALUATION

Using the methodology described in Figure 8, we setup a

demo to demonstrate OF@TEIN sFlow traffic monitoring

system. Our Demo setup consisted of VMs at Jeju National

University and GIST as shown in Figure 9. Jeju and GIST

VMs are connected to each other via HP OpenFlow Switches.

These switches are connected through a GRE tunnel. The

Tunnel is created using OVS (Open vSwitch). The slice that

VMs belong to is assigned the network address 192.168.16.0.

Tunnel endpoints are assigned 192.168.16.10 and

192.168.16.11 IP addresses. We generate traffic between Jeju

and GIST VMs using IPerf. Both Jeju OpenFlow Switch and

GIST OpenFlow switch are controlled by Floodlight controller.

sFlow-RT analytics engine gets sFlow datagrams from both the

switches.

sFlow monitoring application communicates with both

Floodlight controller and sFlow-RT using REST API. sFlow

monitoring application gets metrics from sFlow-RT and feeds

them to Graphite to render the plots in real-time.

Two of the plots and corresponding flow definitions are

shown in Figures 10 and 11. Plots show real-time traffic stats

corresponding to the two flows.

Fig. 10. Real-time visualization of flow named testflood3

Fig.11. Real-time visualization of flow named test3.

VII. CONCLUSION

Software defined networking (SDN) is an emerging

architecture that is dynamic, manageable, cost-effective, and

adaptable making it ideal for today's dynamic and high

bandwidth applications. This architecture decouples control

plane of networking devices from their data plane enabling

applications to directly program the network control logic. This

enables multitude of SDN use cases. Packet flow monitoring is

a major use case of SDN. It enables the network engineer to

guide network management and control applications. A key use

case of SDN enabled flow monitoring in OF@TEIN is

FlowSpace monitoring. SDN flow monitoring application gets

slice flow definitions from OpenFlow controller, loads them

into sFlow-RT, fetches summary statistics and feeds them to

Graphite real-time charting tool. Our monitoring system also

enables us to monitor GRE tunnels which are used to isolate

traffic of tenant networks.

In the future, we will extend OF@TEIN flow monitoring

system to monitor slice flows and overall (i.e., provider

network flows side by side. Furthermore, we intend to identify

small (mouse) and large (elephant) flows and study the

performance of the system at scale.

VIII. ACKNOWLEDGMENT

This work was partially supported by one of KOREN

projects of National Information Society Agency (13-951-00-

001).

REFERENCES

[1] Big Switch Networks, “Open SDN for Network Visibility,”

April 2013.

[2] Rich Groves, "Microsoft's DEMon (Distributed Ethernet

Monitoring)," http://blog.sflow.com/2013/04/sdn-packet-

broker.html, April 2013.

[3] sFlow-RT, http://www.inmon.com, May 20, 2014.

[4] N. McKeown, Keynote talk: Software Defined Networking. In

Proc. of IEEE Conference on Computer Communications

(INFOCOM'09), Apr. 2009.

[5] Floodlight Controller, http://www.projectfloodlight.org, May 14,

2014.

[6] Graphite - Scalable Realtime Graphing,

http://graphite.wikidot.com/, May 15, 2014.

[7] Google, "OpenFlow@Google," Open Networking Summit,

April 12, 2014.

[8] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hlzle,

S. Stuart, and A. Vahdat. "B4: Experience with a globally

deployed software defined WAN," In ACM SIGCOMM, Aug.

2013.

