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Abstract—This paper provides insights into the traffic flow 

monitoring system of OF@TEIN (OpenFlow@Trans Eurasia 

Information Network) testbed. OF@TEIN is software defined 

networking (SDN) testbed adapted by KOREN (KOrea advanced 

REsearch Network) and integrated with the research and 

education networks of several Asian nations including Japan, 

Malaysia, Thailand, Vietnam, Philippine, etc. Traditional traffic 

monitoring solutions such as NetFlow, RSPAN ports, Network 

Packet Brokers (NPBs) can't provide network-wide visibility in 

OF@TEIN because OF@TEIN is a large multi-tenant testbed 

deployed over high speed research networks across several 

countries. Therefore, we have implemented a new sFlow-based 

flow monitoring system that is tailored to OF@TEIN 

requirements and can provide real-time L2 to L7 network wide 

visibility. OF@TEIN uses SDN-based network virtualization to 

slice the network among multiple concurrent experimenters. 

Machines in a network slice (or VLAN) communicate with each 

other using GRE tunnels. Our traffic monitoring system enables 

monitoring flow spaces of VLANs as well as physical provider 

network. It utilizes northbound interfaces (NBIs) exposed by 

sFlow-RT analytics engine and  FloodLight SDN Controller.  It 

periodically fetches flows statistics from sFlow-RT and stores 

them in time-series format in Whisper RRD database. Graphite 

real-time charting tool is used to plot the statistics stored in 

Whisper.  

Index Terms—SDN, OF@TEIN, OpenFlow, sFlow, sFlow-RT, 

Visibility. 

I. INTRODUCTION 

     Lack of visibility into today's high speed business critical 

networks is a major issue. Network engineers have struggled 

with monitoring traffic flows through their networks. They 

have suffered from the limitations of conventional traffic 

visibility methods such as port mirroring/SPAN (switch port 

for analysis) and TAP (Test Access Point). Since early 90s, 

SPAN(mirror) ports have been widely used to direct packets 

from any or all ports of a switch/router to a collector (through a 

single port) for analysis. However, typical SPAN ports can't 

handle full duplex (FDX) and VLAN monitoring is 

problematic. There is no guarantee that all the traffic required 

for proper analysis would be captured. Under specific load 

conditions, the Ethernet switch treats SPAN data with lower 

priority than regular traffic and the mirrored frames are 

arbitrarily discarded [1]. Moreover, SPAN port technology 

does not scale to today's Gigabit Ethernet (GbE) networks e.g., 

FDX Gigabit and 10 Gigabit networks. Routers/switches 

cannot replicate this amount of traffic to the SPAN port at line-

rate in real time. SPAN ports can be useful only in low 

throughput scenarios. An alternative to SPAN ports are 

network taps. A tap installed between two points A and B in 

the network enables a third party to get a copy of all the traffic 

between points A and B passing through the tap.  

      In traditional systems, a monitoring appliance must be 

directly connected to a tap or SPAN port. This method makes 

provisioning network-wide traffic costly, cumbersome and 

inflexible as it would require installing monitoring appliances 

at each network segment. Typically, only a small segment of 

the traffic in a large network can be monitored this way. 

Network packet brokers (NPBs) are usually used to aggregate 

traffic from multiple monitoring devices and send it to analysis 

tools. However, this solution is costly and inflexible especially 

for high-speed 10/40 Gbps or future 100 Gbps networks as it 

makes almost impossible for tools to ingest resulting 

humongous data [8].  

      Netflow can provide high-level visibility into traffic flow 

but lacks the details for deep packet analysis. It is an 

aggregation technology and a single NetFlow v5 UDP 

datagram can contain up to 30 flows. However, because of its 

aggregation, we can get only a few details such as  source and 

destination interfaces/ports, source and destination addresses, 

protocol, total packets, total bytes, flow start and end times, etc. 

We require high-end routers and switches to send NetFlow data. 

Sending NetFlow data can overload network resources already 

stretched thin. It does not support monitoring LAN and VLAN 

traffic.  

      Because of the limitations of traditional traffic monitoring 

technologies, there is a lot of interest in SDN as an alternative 

and far more flexible and scalable way of monitoring high-

bandwidth networks especially data center networks [2] [7]. 

SDN systems use OpenFlow and sFlow enabled commodity 

switches with a sophisticated software-based centralized 

controller [5] which enables network engineers to monitor and 

engineer network traffic in new ways. These OpenFlow 

switches are connected to traffic analysis tools such as sFlow-

RT [3], sFlowTrend, Ganglia, etc. The network of sFlow 

enabled switches exports sFlow measurement datagrams to one 

or more collectors. sFlow collectors enable an SDN application 

to gain visibility into the traffic across the network. sFlow and 
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OpenFlow [4] together provide complementary functions for 

software defined network environments.   

      Rest of the paper is organized as follows. In Sections II, III 

and IV, SDN and sFlow technologies in the context of flow 

monitoring are described. In section V, we provide details of 

OF@TEIN flow monitoring system. In section VI, we discuss 

demonstration of the system. Section VII concludes the paper.  

II. BACKGROUND 

Traditional network devices perform two types of functions.   

 The data plane of the device  looks up  routing table to 

decide where to forward packets. It carries user data and 

uses dedicated ASICSs forward data packets.  

 The control plane of the device carries control traffic 

originated from (or destined to) a network device. It makes 

decision about where user traffic should be sent.  It takes 

care of tasks such as building routing table/spanning tree, 

exporting flow statistics, and more. It is the brains of the 

network and is implemented in software.  

      Software defined networking (SDN) separates the network 

Data Plane and Control Plane, permitting external software to 

monitor and control network resources. Open Southbound 

APIs like sFlow and OpenFlow are an essential part of this 

separation, connecting network devices to external controllers, 

which in turn present high level Open Northbound APIs to 

SDN applications as shown in Figure 2 [2]. This makes 

network management and control much more flexible because 

there are one or few control planes to configure. Network 

engineers have complete control over the network traffic and 

can automate orchestration of network services such as 

bandwidth reservation, load balancing, traffic differentiation, 

DDoS mitigation, etc.  
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Fig. 1. Traditional vs. Software Defined Networking 

      As shown in Figure 1, in traditional network architecture, 

data plane and control plane both reside on the network device. 

Traffic forwarding rules are set on each device. Network 

devices do not have visibility of the entire network.  In SDN 

architecture, control plane is taken away from the network 

device and moved to a centralized controller. The controller 

has visibility to the entire network and enables network 

engineers to make forwarding rules based on information about 

the entire network. Controller communicates policies/rules to 

the devices via controller agent (which resides in each network 

device) using a standard protocol usually OpenFlow. 

Controller exposes northbound APIs that allow business 

applications to communicate with the controller. In short, SDN 

consists of four components: controller agent, OpenFlow based 

southbound APIs, SDN controller and RESTful northbound 

APIs. Control layer communicates with data layer using 

OpenFlow and business applications communicate with the 

control plane using northbound APIs. 

      The key benefit of SDN is that it allows business 

applications to program the network behavior to optimize its 

performance. SDN is a disruptive technology with far reaching 

impact on network management and control.  

III. FLOW MONITORING USING SFLOW 

Switches are configured to use sFlow and OpenFlow 

protocols to communicate with the sFlow Analytics engine 

(e.g., sFlow-RT [3]) and OpenFlow controller (e.g., Floodlight 

[4]) respectively in the control plane.   Control plane software 

such as sFlow and OpenFlow controller use Open Northbound 

APIs to provide summary statistics and control functionality to 

SDN applications such as Load Balancer, DDoS, etc.  

 

Fig. 2.  SDN (Software Defined Networking) Stack 

 

Fig. 3. sFlow Agent embedded in a switch/router 

The OpenFlow protocol enables SDN Controller running 

on a server to gather topology information of a network of 



switches and configure the forwarding behavior of these 

switches. SDN controller builds a graph based model of the 

network and runs a sophisticated routing algorithm to decide 

the path of flows through the network. Flow routes decided by 

the controller are added to the forwarding tables of the switches 

using the OpenFlow protocol. The sFlow standard is 

implemented in the switches using a separate ASIC 

(Application Specific IC) which allows for real time network-

wide visibility in the traffic flows. Together, sFlow and 

Openflow can be used to provide an integrated flow monitoring 

system where OpenFlow controller can be used to define flows 

to be monitored by sFlow. Furthermore, metrics from sFlow 

can be used as feedback by an SDN application to control the 

forwarding behavior in the switches. 

IV. SFLOW TRAFFIC SAMPLING TECHNOLOGY 

Before sFlow is a multi-vendor sampling technology 

embedded within switches and routers. It provides the ability 

to continuously monitor application level traffic flows at wire 

speed on all interfaces simultaneously. The sFlow Agent is a 

software process that runs as part of the network management 

software within a device as shown in Figure 4. sFlow agent 

combines interface counters and flow samples into sFlow 

datagrams that are sent across the network to an sFlow 

Collector. Packet sampling is typically performed by the 

switching/routing ASICs, providing wire-speed performance. 

The state of the forwarding/routing table entries associated 

with each sampled packet is also recorded. 

      Using sFlow, traffic samples can be collected from wide 

range of network devices such as open virtual switches (OVS), 

physical switches, hosts, etc. sFlow monitoring can be 

configured on all interfaces of the device with little overhead 

and sampling rate for each link can be decided according to 

the monitoring policy.  

      sFlow agents in network devices use random sampling 

according to the defined sampling rate and therefore, can be 

used to monitor high speed networks (Gbps speeds and higher) 

with quantifiable accuracy. The Sampled data is sent as UDP 

packets to the specified host and port where sFlow collector 

software computes summary statistics and possibly display the 

results graphically. 

      Figure 4 shows the basic elements of the sFlow system. 

sFlow Agents throughout the network continuously send a 

stream of sFlow Datagrams to a central sFlow Collector where 

they are analyzed by an analytics engine to produce a rich, real-

time, network-wide view of traffic flows. 

      A widely used tool to process sFlow packets received from 

the network devices is sFlow-RT. It enables real-time 

visibility into software defined networks. sFlow-RT sits in the 

control plane of the SDN stack. It converts the received 

datagrams into actionable metrics or summary statistics based 

on the flows as defined by the user. A flow of traffic is a set of 

packets with a common property, known as the flow key, 

observed within a period of time. The flow key is usually 

specified by fields from the packet header, such as the IP 

source and destination address and TCP/UDP port numbers. 

Flow names are usually used as metrics which are 

programmatically accessible through RESTful Northbound 

APIs. Any language that supports HTTP request messages 

(Perl, Python, Java, Java script, bash, etc.) can be used to 

retrieve metrics from sFlow-RT. sFlow-RT statistics can be 

retrieved in JSON format. JSON encoded text based results 

are easy to read and widely supported by programming tools. 

Following URL is used to retrieve JSON encoded metrics 

from sFlow-RT:  

 http://Server:8008/metric/agents/metrics/json?filter 

      where server is the host running sFlow-RT, agents are 

semicolon separated list of host addresses or names, or ALL to 

include all hosts, metrics are comma separated list of metrics 

to retrieve and filter is a filter to further restrict the hosts to 

include in the query. 

 

Fig. 4. sFlow Agents and Collector 

V. TRAFFIC VISIBILITY IN OF@TEIN TESTBED 

      In OF@TEIN, sFlow agent is embedded in OpenFlow 

enabled physical and virtual network devices.  sFlow is 

configured to capture packets according to a specified 

sampling rate. It sends samples in the form of measurement 

datagrams to sFlow-RT. sFlow-RT is real-time analytics 

engine. sFlow-RT processes the stream of measurement 

datagram from sFlow in real-time and, therefore, provides 

real-time summary statistics to application via northbound 

REST APIs.  OF@TEIN employs FlowVisor proxy to 

create per user slices or virtual networks. FlowVisor acts as 

a proxy between physical switches and multiple OpenFlow 

controllers. Each OpenFlow controller controls flows 

within its own slice. FlowVisor slice the network resources 

such as link bandwidth, maximum number of forwarding 

rules, topology and fraction of switch/router CPU.  

OF@TEIN flow monitoring system supports monitoring of 

per slice FlowSpace.  An experimenter can monitor her 

own FlowSpace while network administrator can monitor 

all flowspaces.    



      Figure 5 demonstrates the data, control and application 

layers of the current version of OF@TEIN flow monitoring 

system. We use sFlow-RT as sFlow collector and analytics 

engine. It receives a continuous stream of sFlow datagrams 

from network devices and converts them into actionable 

metrics that are accessible through REST APIs. REST APIs 

makes it easy for each application to configure flows, 

retrieve metrics, set thresholds, and receive notifications.  
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Fig. 5. sFlow monitoring system in OF@TEIN Testbed 

      We developed following python programs: parse_flows, 

submit_flows, parse_metrics and statistics. Users define 

traffic flows using xml according to a schema. parse_flows 

parses theses flows, converts xml flow definitions to JSON 

flow definitions and builds an index with host URL as key and 

JSON flow definition as value. Then submit_flows program is 

invoked to push the flow definitions to sFlow-RT one by one 

using the REST commands stored in the index. Summary 

statistics i.e., metrics against the flow definitions are specified 

again using xml. parse_metrics parses the xml description 

and builds a REST command that is used to fetch statistics in 

JSON format from the sFlow-RT Analytics Engine. statistics 

is used internally by parse_metrics to make the REST API call 

using 'requests' python package and fetch the metrics from 

sFlow-RT. statistics also translates metrics results into {name, 

value, time} tuples and feeds them to Graphite's whisper 

database [6].  Whisper is a fixed-sized Round Robin Database 

similar in design to RRDtool and only stores time-series 

numeric data. statistics.py corresponds to sFlow2Graphite in 

Figure 5. Graphite Webapp is used to render plots using the 

time-series data from whisper. Graphite Webapp provides a 

dashboard for retrieval and visualization of our metrics.  

A. Multi-tenancy  and  FlowSpace Monitoring 

      OF@TEIN is a multi-tenant testbed which allows data 

plane resource to be shared among multiple experimenters. 

This is achieved by flowspace-level virtualization using 

FlowVisor. VMs in tenant networks can reside on physical 

servers deployed across various sites in Korea as well as sites 

in Japan, Philippine, Thailand, Malaysia, Indonesia, etc. 

Nodes distributed at various sites are connected via L3 

networks. To allow L2 connectivity between these nodes, we 

have used GRE tunneling. GRE tunnels are created using 

software-based OVS (Open vSwitch) as well as hardware-

based NetFPGA solutions. Figure 6 shows multiple 

tenant/virtual networks typical of real-world concurrent 

experiment slices on top of OF@TEIN physical substrate. An 

experimenter gets topology visualization and flowspace 

visibility of her slice(s). Testbed administrators on the other 

hand can monitor all the overlay tenant networks as well as 

underlay physical network. In Figure 6, topology visualization 

is provisioned using NetOpen RA UI developed by GIST, 

South Korea. However, a new visualization UI is in progress. 

 

 

Fig.6.Virtual playgrounds (or tenant networks) in OF@TEIN 

B. Visibility into GRE Tunnels 

In OF@TEIN, VMs in a tenant network (or virtual 

playground) are spread across public WAN. However, these 

VMs are mostly assigned private IP addresses that are not 

routable over the Internet. To provide a LAN connectivity 

illusion between these VMs, we use GRE (Generic Routing 

Encapsulation) to encapsulate tenant network host packets in 

routable IP packets. We use OVS (Open vSwitch) to 

encapsulate traffic between hosts via GRE tunnels and hence 

create overlay user networks.  Note that OF@TEIN is managed 

and orchestrated as a cloud using OpenStack as the cloud OS.  

OpenStack uses GRE tunneling functionality of OVS to isolate 

different tenant networks from one another.  

sFlow enables us to monitor traffic flows through GRE 

tunnels. Any networking device, virtual or physical, installed 

between endpoints of a GRE tunnel can capture tunneled 

packets using sFlow. However, OVS that hosts a tunnel 



endpoint cannot capture GRE encapsulated packets because 

packets are captured before they enter the tunnel. 

C. Flows Definition 

The Users can define the flows using xml data model as 

given below: 
<?xml version="1.0"?> 

<flows> 

  <!-- Flow keys are a set of comma delimited packet attributes --> 

  <flow name="tcp1"           

        keys = "ipsource,ipdestination,tcpsourceport,tcpdestinationport"   

        value="frames"  

        filter="ipsource=192.168.1.1&amp;ipdestination=192.168.1.2" 

/> 

</flows> 

      A flow is defined using  name, keys, value and optionally 

filter attributes. 

D. Visualization o f flow statistics  

     We use Graphite Dashboard to provide real time visibility 

into flows across OF@TEIN testbed. When the network 

engineer opens the graphite web interface, he shall see two 

panels as shown in Fig. 7. 

 

 

Fig.  7. Flow visualization using Graphite 

Left panel is taken up by the browser tree. Browser tree 

allows her to select metrics to show on a real-time graph in the 

right panel called composer.  To add a new graph directly, she 

selects a metric series in the browser tree, and a graph for that 

value is added to the graph panel. Alternatively, if a graph for 

that metric series already exists, it will be removed.  

E. sFlow Monitoring Methodology 

         The flow monitoring application in OF@TEIN software 

defined tested goes through following steps to deliver real 

time network visibility. The workflow is also demonstrated in 

Fig. 8. 

 Get Topology Info: SDN Application gets topology 

information based on LLDP (Link Layer Discovery 

Protocols). The information comprises both DIRECT and 

TUNNEL links. 

 Build Topology: SDN Application uses Avior GUI to 

show a graph of the network topology. 

 Define Flows: Create, delete or modify flow rules in 

OpenFlow switches. Create, delete or modify flow 

definitions in sFlow-RT Analytics Engine. 

 Get Metrics: Fetch metrics (i.e., flow statistics and 

interface counters) periodically from sFlow-RT. 

 Plot Metrics: Feed metrics to Graphite for generating 

graphs of the metrics being monitored. 

 

 

Fig.  8. Flow-space monitoring methodology using SDN 
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Fig. 9. OF@TEIN Monitoring System Demo Setup 

VI. SYSTEM EVALUATION  

Using the methodology described in Figure 8, we setup a 

demo to demonstrate OF@TEIN sFlow traffic monitoring 

system. Our Demo setup consisted of VMs at Jeju National 

University and GIST as shown in Figure 9. Jeju and GIST 

VMs are connected to each other via HP OpenFlow Switches. 

These switches are connected through a GRE tunnel. The 

Tunnel is created using OVS (Open vSwitch).  The slice that 

VMs belong to is assigned the network address 192.168.16.0. 



Tunnel endpoints are assigned 192.168.16.10 and 

192.168.16.11 IP addresses. We generate traffic between Jeju 

and GIST VMs using IPerf. Both Jeju OpenFlow Switch and 

GIST OpenFlow switch are controlled by Floodlight controller. 

sFlow-RT analytics engine gets sFlow datagrams from both the 

switches.  

sFlow monitoring application communicates with both 

Floodlight controller and sFlow-RT using REST API.  sFlow 

monitoring application gets metrics from sFlow-RT and feeds 

them to Graphite to render the plots in real-time. 

Two of the plots and corresponding flow definitions are 

shown in Figures 10 and 11. Plots show real-time traffic stats 

corresponding to the two flows.  

 

  

Fig. 10. Real-time visualization of flow named testflood3  

 

Fig.11. Real-time visualization of flow named test3.  

VII. CONCLUSION 

Software defined networking (SDN) is an emerging 

architecture that is dynamic, manageable, cost-effective, and 

adaptable making it ideal for today's dynamic and high 

bandwidth applications. This architecture decouples control 

plane of networking devices from their data plane enabling 

applications to directly program the network control logic. This 

enables multitude of SDN use cases. Packet flow monitoring is 

a major use case of SDN. It enables the network engineer to 

guide network management and control applications. A key use 

case of SDN enabled flow monitoring in OF@TEIN is 

FlowSpace monitoring. SDN flow monitoring application gets 

slice flow definitions from OpenFlow controller, loads them 

into sFlow-RT, fetches summary statistics and feeds them to 

Graphite real-time charting tool. Our monitoring system also 

enables us to monitor GRE tunnels which are used to isolate 

traffic of tenant networks. 

In the future, we will extend OF@TEIN flow monitoring 

system to monitor slice flows and overall (i.e., provider 

network flows side by side. Furthermore, we intend to identify 

small (mouse) and large (elephant) flows and study the 

performance of the system at scale. 
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