
Linux Kernel-based Feature Selection 
for Android Malware Detection 

Hwan-Hee Kim 
Dept. of Computer Science 

Kangwon National University 
Chuncheon, Korea 

hwanhee0920@kangwon.ac.kr 

Mi-Jung Choi* 
Dept. of Computer Science 

Kangwon National University 
Chuncheon, Korea 

mjchoi@kangwon.ac.kr

Abstract— As usage of mobile increased, target of attackers 
has changed from PC to Mobile environment. In particular, 
various attacks have occurred in android platform because it has 
feature of open platform. To solve this problem, researches of 
machine learning-based malware detection continually have 
progressed. However, as version of Android platform 
continuously is updated, some feature that used in existing 
research could not collect any more. Therefore, we propose 
Linux kernel-based novel feature in order to detect malware in 
higher than android version 4.0. In addition, we perform feature 
selection to select optimal feature about foregoing feature. This 
way is able to improve performance of malware detection system. 
In experiment, by performing android malware detection 
through support vector machine classifier which has showed 
relatively good performance in existing studies, we show novel 
feature feasibility and validity. 

Keywords—Feature selection, Malware detection, Linux kernel, 
Machine learning 

I.  INTRODUCTION 

In parallel with the increase of mobile applications, mobile 
devices continue to evolve for providing a variety of services to 
users [1]. As users’ demand increases, the computing power of 
mobile environment is developing as much as the existing PC 
environments. Making frequent use of mobile devices started 
to store various personal information such as bank information 
and individual’s ID, password for each site in the mobile 
devices. Consequently, attackers tend to widen their attack 
scope to mobile environments as well as the existing PC ones 
[2]. 

Of mobile platforms, various attacks have been carried out 
frequently toward the Android platform in particular because it 
has a feature of open platform. In other words, because its 
verification procedure for third-party applications developed by 
users is a little bit weaker than other platforms, it is easy to 
distribute, and capable of repackaging to add some malicious 
codes into the existing application to re-upload, so it means that 
the distribution of malware could be easy to carry out. 
According to the F-secure report [3], it could be shown that the 
proportion of Android platform gradually increases but the one 
of other platforms decreases in regard to the generation of new 

malware. Fig. 1 represents the generation of new malware for 
each platform described in the F-secure report. 

Fig. 1. Generation value of platform-specific new malware 

Diverse studies have been conducting actively to cope with 
these growing malware [4, 5, 6, 7, 8, 9]. Most of these studies 
could be divided into signature-, behavior- and statistics-based 
analysis methods. The signature-based analysis method 
provides a higher detection rate when detecting malware 
existed in its signature, but has a limit of being non-detectable 
when finding a new malicious code not existed in its signature. 
Therefore, the behavior-based analysis method has been 
exploited recently in a lot of studies to solve the limit of 
signature-based analysis, and most of them are studies to detect 
mobile malware based on machine learning [6, 7, 8, 9]. 

The machine learning based malware detection studies 
generally extract specific features from mobile devices to send 
them to an analysis server [10]. The analysis server receiving 
the feature information carries out its analysis through internal 
machine learning, and performs malware detection by 
resending the result. However, there was a problem of not 
extracting some of the features suggested by the existing 
studies because the version of Android recently continues to 
upgrade. In particular, as the version of Android was upgraded 
from 2.3 to above 4.0, some of the feature information 
suggested by the existing studies disappeared, or were changed 
into features being extractable only if acquiring the root 
authority.  

Therefore, this paper proposes new Linux kernel based 
features being extractable from the Android with a version 

* Correspondence to Mi-Jung Choi, Dept. of Computer Science, KNU,
Chuncheon, Republic of Korea.

Copyright IEICE - Asia-Pacific Network Operation and 
Management Symposium (APNOMS) 2014



above 4.0 without the root authority. In addition, it carries out 
feature selection which is a method to improve the detection 
system’s performance by removing unnecessary information 
from the extracted feature information. These selected features 
are used to carry out a malware detection experiment in the 
Android environment. The SVM (support vector machine), 
which showed relatively better performance in past studies, is 
exploited for a machine learning classifier used in the 
experiment. 

II. RELATED WORK 
The paper in [6] proposed a behavior based malware 

detection framework in the Android environment. The method 
proposed in [6] was to classify and detect normal applications 
and malicious ones displaying abnormal behavior by 
continuously monitoring various features in mobile devices and 
applying the extracted features to the machine learning based 
detection system. Most of the features used in the paper above 
could be classified into 14 such as keyboard, scheduler, CPU, 
SMS message, battery, memory and network, and it used a 
total of 88 features. In addition, it also carried out a feature 
selection to select the optimal feature for improving the 
detection system’s performance. However, as the Android’s 
version was upgraded, it could not extract features about 
memory usage for each process such as Garbage_Collections 
and DMA_Allocation without the root authority. Therefore, 
there is a limit of being difficult to use in the present Android 
devices. 

The paper in [7] also proposed a learning machine based 
malware detection system in the Android environment. Most of 
the features used in [7] were classified into 7 such as network, 
SMS, CPU, power, process, memory and virtual memory, and 
it used a total of 32 features. In particular, the features about 
memory were classified into memory and virtual memory in 
detail, and the memory was classified into native, dalvik and 
other to organize a memory-centered feature set. In addition, it 
also carried out a performance evaluation for the machine 
learning classifiers such as RandomForest, Naive Bayes, 
Logistic and SVM through experiments. However, the Android 
environment used in the [7]’s experiments was 2.3.3 version, 
and it needs to acquire the root authority for extracting detailed 
features of memory for each process such as native, dalvik and 
other in the current Android environment with a version of 
above 4.0. 

Therefore, this paper selects new Linux kernel based 
features to detect malware in the Android environment with a 
version of above 4.0. Most of the newly selected features are 
classified into memory, CPU and network, and it uses a total of 
59 features. In addition, it carries out feature selection to find 
the optimum of 59 features. The detailed description about the 
features is provided in Section 3. 

III. LINUX KERNEL-BASED FEATURES 
This section introduces features to detect malware in the 

Android with a version of above 4.0. It also introduces feature 

selection to improve the detection system’s performance by 
removing unnecessary features. 

3.1 Linux Kernel-based Feature Extraction 

The number of features proposed in this paper is a total of 
59, which are extracted on the basis of Linux kernel in the 
Android. Most of the features are divided into three kinds such 
as memory, CPU and network, and their details are as Table 1. 

Table 1. Linux kernel-based proposed feature 

The features introduced above extract contents existed on 
the ‘/proc’ folder in the Linux kernel. In the '/proc' folder, the 
mobile device’s process information and the device’s state 
information etc. are stored as a file form, and this information 
is changed in real time to be stored. 

Taking a closer look at respective classifications, the 
features related to memory are obtained by pashing contents 
existed in the '/proc/meminfo' file. The features related to CPU 
are obtained by pashing the result of Linux’s ‘top’ command. 
This paper not only extracts CPU-related features from the 
result of ‘top’ command but also calculates the extracted 
features to represent the total, user’s and system’s CPU usage 
as a percentage to also use the result as features.  

For the features related to networks, they are extracted by 
two methods. The features related to Rxbytes and Txbytes use 
'tcp_rcv' and 'tcp_snd' files in the '/proc/uid_stat/uid' folder. 
This extracted Rxbyte(rcv) and Txbyte(snd) information is 
exploited to additionally calculate the number of Rxbyte and 
Txbyte generated per unit time and the variation rates of 
Rxbyte and Txbyte to use them as features. Other network 
features are obtained by pashing the '/proc/net/snmp' file’s 
content.  

3.2 Feature Selection for Optimal Features 

This paper proposes 59 features, which is relatively larger 
in number than the existing studies. If a large number of 
features are used like this, there could be much overhead in 
feature extraction of an agent, and analysis time and detection 
performance of a detection system when extracting features or 
performing machine learning, so it needs to remove 
unnecessary features. Therefore, this paper performs feature 
selection to remove unnecessary features. Fig. 2 shows the 
feature selection process. 

Category Feature 

Memory 
(24) 

MemFree, Buffers, Cached, Active, Inactive, Active(anon), 
Inactive(anon), Active(file), Inactive(file), Unevictable,  
HighFree, LowFree, Dirty, AnonPages, Mapped, Shmem,  
Slab, SReclaimable, SUnreclaim, KernelStack, PageTables, 
Committed_AS, VmallocUsed, VmallocChuck 

CPU 
(10) 

User, Nice, System, Idle, IOW, IRQ, SIRQ, CPU_usage,  
User_CPU_usage, System_CPU_usage 

Network 
(25) 

InReceives, OutRequests, InMsgs, InErrors, InDestUnreachs,  
OutMsgs, OutErrors, OutDestUnreachs, OutEchos, OutEchoReps, 
ActiveOpens, EstaResets, CurrEstab, InSegs, OutSegs, 
RetransSegs,OutRsts, InDatagrams, OutDatagrams, Total_Rxbytes,  
Total_Txbytes, Real_Rxbytes, Real_Txbytes,  
Rxbyte_Percentage_change, Txbyte_Percentage_change 

The number of total features = 59 



 
Fig. 2. Workflow in feature selection process 

First, it calculates the malware detection result when using 
the whole features. Then, it assumes a case of removing a 
certain feature and calculates the malware detection result. In 
other words, the malware detection experiment is carried out 
58 times except the first feature. From the result above, it 
selects an experiment with the best performance and removes 
the corresponding feature. Then, it assumes a case of removing 
another feature other than the removed one to calculate the 
malware detection result. This feature selection procedure is 
repeated until the detection performance becomes lower than 
the previous result. Information about the selected features 
other than the ones removed after the feature selection is sent to 
the detection system. The detection system detects the presence 
of malware through a machine learning classifier. 

IV. EXPERIMENT AND RESULT 
4.1 Experimental Data Set 

For the data set used in this paper, the training and test data 
for the machine learning is created after mixing the feature 
information under normal situations with the feature 
information under situations when abnormal applications are 
executed. Looking at in detail, for the training data, the 
respective number of vectors under normal situations and under 
situations when abnormal applications are executed is 2,000 
with a one-to-one ratio, and for the test data, the number of 
vectors under normal situations is 1,000 and the number of 
vectors under abnormal situations is 250 for each abnormal 
application. For the test data, the reason that vectors under 
normal situations is larger in number than ones under situations 
when abnormal applications are executed is because there are 
more normal situations than abnormal ones in the actual mobile 
environment. 

For abnormal applications used in the experiment, 
abnormal applications frequently introduced in the Ahnlab 
ASEC report [11] were selected, and they are composed of 
total 6 such as SMSHider, GoldDream, Snake, FakeInst, 
PjApps and DrawSlasher.  

4.2 Experiment Method 

The schematic diagram of malware detection system used 
in this paper is as Fig. 3. 

 
Fig. 3. Structure of abnormal detection system 

The analysis system is composed of a monitoring agent and 
analysis server, and a feature extraction module in the 
monitoring agent extracts features selected through the feature 
selection earlier mentioned and sends the collected data to the 
data management module. Features are periodically extracted 
every 10 seconds. The data management module vectorizes 
features collected as a vector, and the vectorized data is sent to 
the analysis server through the communication module. The 
analysis server classifies data received from the monitoring 
agent into the training and test data to store them. The ratio of 
the training data to test one is 3:2, and the content in the 
training and test data is not overlapped. This created training 
and test data is used to detect the presence of malware through 
the SVM (support vector machine) which is one of machine 
learning classifiers. 

4.3 Experiment Result 

4.3.1. Results of Feature selection 

This section describes a result of performing the feature 
selection earlier introduced. To present performance of the 
feature selection result, this paper uses TPR (true positive rate), 
FPR (false positive rate), Precision and Accuracy, which are 
performance indexes used generally in the machine learning. 
Table 3 shows a result of performing the feature selection. 

Table 3. Experiment result of feature selection 

As shown in Table 3, it could be found that the 
performance is gradually improved whenever removing 
unnecessary features one by one, and as a result, it showed the 
best performance when removing 23 features such as InErrors, 

The number 
 of eliminated  

feature 
TPR FPR Precision Accuracy Eliminated  

Feature 

0 95.93% 0.68% 96.26% 98.84% X 
1 95.96% 0.67% 96.39% 98.84% InErrors 
2 95.96% 0.67% 96.39% 98.84% VmallocUsed 
3 95.97% 0.67% 96.41% 98.85% CurrEstab 

: 
22 95.97% 0.67% 96.63% 98.85% OutRequests 
23 95.97% 0.67% 96.63% 98.85% Userpercent 
24 95.97% 0.67% 96.46% 98.85% IOW 
25 95.97% 0.67% 96.40% 98.85% OutDestUnreachs 



VmallocUsed, CurrEstab, etc. Table 4 shows 23 features 
removed and 36 ones remained after performing the feature 
selection. In addition, this paper compared situations before 
and after performing the feature selection. Before performing 
the feature selection, the time required for training is 2,590ms, 
and the time required for testing is 31ms. On the hand, after 
performing the feature selection, the time required for training 
is 1,960ms, and the time required for testing is 32ms. It is 
considered that the difference would become larger when using 
more malware information in the future. 

Table 4. Feature information after feature selection 

 
The eliminated feature  

by feature selection 
( 23 feature ) 

The selected feature  
after feature selection 

( 36 feature ) 

Feature  
information 

Active, Active(anon), 
Active(file), Anonpages, 
Buffers, Cached, 
CPUPercent, CurrEstab, 
Dirty, HighFree, Inactive, 
Inactive(anon), Inactive(file), 
InErrors, LowFree, 
MemFree, Nice, 
OutRequests, System, 
SystemPercent, 
Txbytes_percentage_change, 
UserPercent, VmallocUsed 

ActiveOpens, Commited_AS, 
EstaResets, Idle, InDatagrams, 
InDestUnreachs, InMsgs, InReceives, 
InSegs, IOW, IRQ, KernelStack, 
Mapped, OutDatagrams, 
OutDestUnreachs, OutEchoReps, 
OutEchos, OutErrors, OutMsgs, OutRsts, 
OutSegs, PageTables, Real_Rxbytes, 
Real_Txbytes, RetransSegs, 
Rxbytes_percentage_change, Shmem, 
SIRQ, Slab, SReclaimable, SUnreclaim, 
Total_Rxbytes, Total_Txbytes, 
Unevictable, User, VmallocChuck,  

 
4.3.2. Result of Malware Detection 

This section verifies performance and validity of the 
features extracted earlier through experiments. The experiment 
compares results of detecting malware when not performing 
the feature selection and when performing the feature selection. 
Table 5 shows the result of detecting malware when not 
performing the feature selection, and when performing the 
feature selection. 

Table 5. Comparison of abnormal detection result 

 Before feature selection After feature selection 
TPR FPR Precision Accuracy TPR FPR Precision Accuracy 

Normal 71.80% 0.02% 99.86% 95.96% 71.80% 0.00% 100.00% 95.97% 
SMSHider 100.00% 1.97% 89.45% 98.31% 100.00% 0.45% 97.37% 99.61% 
GoldDream 99.80% 0.10% 99.40% 99.89% 100.00% 0.17% 99.02% 99.86% 

Snake 100.00% 0.98% 94.43% 99.16% 100.00% 3.93% 80.91% 96.63% 
FakeInst 100.00% 0.00% 100.00% 100.00% 100.00% 0.00% 100.00% 100.00% 
PjApps 100.00% 0.15% 99.11% 99.87% 100.00% 0.15% 99.11% 99.87% 

DrawSlasher 99.90% 1.53% 91.57% 98.67% 100.00% 0.00% 100.00% 100.00% 
Average 95.93% 0.68% 96.26% 98.84% 95.97% 0.67% 96.63% 98.85% 

 
According to the result of Table 5, before feature selection, 

the malware detection system’s performance is relatively good 
even when using the whole features. However, as described 
earlier, it needs to perform the feature selection for removing 
unnecessary features. On the other hands, after feature 
selection, the performance is more improved than when using 
the whole features. Because the malware detection result was 
relatively high when using the whole features, it did not show 
significant performance improvement even after performing 
the feature selection. However, it could be said that the feature 
selection is necessary in terms of reducing the detection 
system’s overhead by removing unnecessary features. 

V. CONCLUSION 
This paper proposed new Linux-kernel based features to 

detect malware in the environment of Android with a version 
4.0 or higher. For the newly proposed features, various features 

such as variations were additionally suggested by not only 
monitoring numerical values of the corresponding features but 
also calculating the extracted features. Furthermore, the 
existing studies considered only Rxbyte and Txbyte for the 
network-related features, but this paper additionally considered 
features related to IP, TCP, ICMP and UDP protocols as well 
as Rxbyte and Txbyte. 

In addition, it performed the feature selection to reduce the 
detection system’s overhead by removing unnecessary features 
from the proposed features. As a result of the feature selection, 
23 features of 59 ones were removed so that 36 ones were 
selected. To verify validity of the feature selection result, the 
SVM, which is one of machine learning classifiers, was used to 
carry out experiments. The experiment result showed a little bit 
improved, and it could be considered to show relatively better 
results. In addition, comparison was carried out in terms of 
resource consumption before and after performing the feature 
selection.  

In the future, it would like to introduce a variety of 
malicious applications other than the malicious applications 
used in the experiment to prove validity of the malicious 
application detection results, and plans to perform a malware 
detection study through time-series analysis methods other than 
machine learning based methods. 

ACKNOWLEDGEMENT 
This research was supported by Next-Generation 

Information Computing Development Program through the 
National Research Foundation of Korea(NRF) funded by the 
Ministry of Science, ICT & Future Plannig (2010-0020723). 

REFERENCES 
[1] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira, 

Y. Elovici, "Mobile malware detection through analysis of deviations in 
application network behavior.", Computers & Security, 2014. 

[2] Hyo-Sik Ham, Hwan-Hee Kim, Myung-Sup Kim, Mi-Jung Choi, 
"Linear SVM-based android malware detection", Frontier and 
Innovation in Future Computing and Communications. Springer 
Netherlands, 2014.  

[3] F-Secure, "Mobile Threat Report 2013", 2013. 
[4] Uddin, Mueen, Kamran Khowaja, et al. "Dynamic Multi-Layer 

Signature Based Intrusion Detection System Using Mobile Agents", 
International Journal of Network Security & Its Applications, 2010. 

[5] Rastogi, Vaibhav, Yan Chen, William Enck., "Appsplayground: 
Automatic security analysis of smartphone applications.", Proceedings 
of the third ACM conference on Data and application security and 
privacy, 2013. 

[6] Shabtai, Asaf, et al. "Andromaly: a behavioral malware detection 
framework for android devices" Journal of Intelligent Information 
Systems, 2012. 

[7] Hyo-Sik Ham, Mi-Jung Choi, "Analysis of Android Malware Detection 
Performance using Machine Learning Classifiers", International 
Conference on ICT Convergence, October, 2013. 

[8] Rastogi, Vaibhav, Yan Chen, William Enck. "Appsplayground: 
Automatic security analysis of smartphone applications." Proceedings of 
the third ACM conference on Data and application security and privacy,   
2013. 

[9] Dai-Fei Guo, Ai-Fen Sui, Yi-Jie Shi, Jian-Jun Hu, Guan-Zhou Lin and 
Tao Guo, "Behavior Classification based Self-learning Mobile malware 
detection", Journal of Computers, 2014. 

[10] Brandon Amos, Hamilton Turner, Jules White, "Applying Machine 
Learning Classifiers to Dynamic Android Malware Detection at Scale", 
Wireless Communications and Mobile Computing Conference, 2013 9th 
International. IEEE, 2013. 

[11] Ahnlab, "Ahnlab ASEC Report", 2013. 


