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Abstract—Anomaly detection has been a hot topic in recent
years due to its capability of detecting zero attacks. In this paper,
we propose a new on-line anomaly detection method based on
LMS algorithm. The basic idea of the LMS-based detector is
to predict IGTE using IGFE, given the high linear correlation
between them. Using the artificial synthetic data, it is shown that
the LMS-based detector possesses strong detection capability, and
its false positive rate is within acceptable scope.

Index Terms—anomaly detection, Least Mean Square, IGTE,
IGFE

I. INTRODUCTION

Network anomalies have been serious challenges for the
Internet nowadays. There are basically two classes of detection
methods. The first class is called misuse detection, also known
as signature-based detection [1]. The primary advantage of
misuse detection is its high degree of accuracy. However, the
misuse detection is incapable of detecting zero day attacks
whose features are not known in advance. The second class
of detection methods is called anomaly detection [2], [3].
Anomaly detection only cares about the statistical properties of
network traffic rather than specific anomaly features. Hence, it
is capable of detecting zero day attacks. This capability is the
strong advantage of anomaly detection over misuse detection.
Hence, anomaly detection has been well studied by researchers
in recent years [4], [5], [6].

However, most anomaly detection methods operate in an
off-line fashion, such as the famous wavelet-based detector
and PCA-based detector [7], [8], etc. They do not output any
results until the entire data set has been collected and stored.
This batch mode would inevitably cause serious time delays.

In this paper, we propose a new on-line detection method
based on the linear correlation between two metrics—IGTE
and IGFE. We make use of IGFE to predict IGTE using
the LMS algorithm [9]. Then we take the prediction error as
the criterion for anomaly detection. The LMS-based detector
can operate in a real-time fashion using only the data points
collected before and at the current step instead of the entire
data set.

The main contributions of this paper are: (1) validating
the highly linear correlation between IGTE and IGFE; (2)
proposing an on-line flow-based anomaly detection method;

(3) validating the effectiveness of the LMS-based detector
quantitatively using artificial synthetic data.

The remainder of this paper is organized as follows. In
section 2, we introduce the procedure of generating IGTE and
IGFE series and validate the high linear correlation between
them. We explain the principles and rationales of the LMS-
based detector in section 3. In section 4, we describe the data
source used in this paper. We validate the effectiveness of the
LMS-based detector and compare it with the famous wavelet-
based detector in section 5. We conclude this work in section
6.

II. IGTE AND IGFE

Network traffic is composed of millions of IP flows.
Anomalies exists in certain number of IP flows. Theoretically,
checking each IP flow is the most high-precision way to
detect anomalies. However, the number of IP flows is usually
extremely huge in today’s network traffic. Analyzing each IP
flow is high-cost and impractical. In this paper, we make
a tradeoff between computation complexity and information
granularity of anomalies by mapping each IP flow into dif-
ferent groups. The number of these groups are much smaller
than the number of IP flows. Analyzing these groups rather
than each IP flow can largely reduce the overhead of anomaly
detection. Meanwhile, this mapping practice preserves the
information of anomalies in as much detail as possible. The
procedure of mapping IP flows is given as follows.

An IP flow can be characterized by its five-tuple val-
ue(Source IP address, Destination IP address, Source port,
Destination port and Protocol type). Using the five-tuple value
as key, we can hash the IP flows into different groups. Denote
the number of the groups by p, and the number of time
intervals by t. When we count the number of IP flows mapped
into each group, a t× p matrix called Randomly Aggregated
Flow Matrix(RAFM) is generated. The (i, j) entry of RAFM
corresponds to the number of IP flows in group j at instant
i. Similarly, when we calculate the overall traffic volume of
the IP flows mapped into each group, a t × p matrix called
Randomly Aggregated Traffic Matrix(RATM) is generated.
The (i, j) entry of RATM corresponds to the overall traffic
volume of group j at time instant i.
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For each row of RAFM, we calculate the sample entropy
of its distribution. Then we have a series with length t called
IGFE(Inter-group Flow Entropy) series. From the point of
view of information theory, the IGFE can be seen as a sum-
marization tool for the distribution of RAFM. For each row
of RATM, we calculate the sample entropy of the distribution.
Then again we have a series with length t called IGTE(Inter-
group Traffic Entropy) series. The IGTE can be seen as a
summarization tool for the distribution of RATM.

Denote RAFM by F , we define the IGFE series as follows:

IGFE[i] = −
p∑

j=1

{
F (i, j)∑p
j=1 F (i, j)

ln
F (i, j)∑p
j=1 F (i, j)

}
i = 1, 2, ..., t

(1)

Denote RATM by T , we define IGTE series as follows:

IGTE[i] = −
p∑

j=1

{
T (i, j)∑p
j=1 T (i, j)

ln
T (i, j)∑p
j=1 T (i, j)

}
i = 1, 2, ..., t

(2)

We find that IGTE and IGFE are highly linearly correlated.
From three days Netflow records collected on a border router
in CERNET2(an academic network in China which will be
described in detail later), we calculate the corresponding IGTE
and IGFE series, which are shown in Figure 1. We observe that
the IGTE and IGFE series evolve almost synchronously. The
two curves are very similar in shape, which implies the high
linear correlation between them. In order to validate this linear
relationship rigorously, we estimate the correlation coefficient
between the IGFE and IGTE series as follows:

ρ =

∑t
i=1(IGTE[i]− IGTE)× (IGFE[i]− IGFE)√∑t

i=1(IGTE[i]− IGTE)2 ×
∑t

i=1(IGTE[i]− IGTE)2

(3)

where IGTE =

∑t

i=1
IGTE[i]

t and IGFE =

∑t

i=1
IGFE[i]

t
are the sample means of IGTE and IGFE series. Apply the
above formula to the three days CERNET2 data, we have ρ =
0.976, which means that IGTE and IGFE are indeed highly
correlated.
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Fig. 1. IGFE series versus IGTE series from CERNET2

III. DETECTION METHODS BASED ON LMS ALGORITHM

Based on the high linear correlation between IGTE and
IGFE, it is reasonable to predict IGTE using IGFE. In order to
achieve this goal, we adopt the Least Mean Square algorithm,
which is a widely used adaptive filter algorithm [9]. If the
IGFE series cannot precisely predict the IGTE series, it means
that anomalies may occur in the network.

A. Wiener filter

In this paper, the general framework for prediction is
traverse filter. Its structure is illustrated in Figure 2 [10].
The length of the traverse filter is denoted by N + 1. The
IGFE series is used as the input signal, denoted by x(k).
The input signal vector of the traversal filter at time k
is denoted by X(k) = [x0(k), x1(k), ..., xN (k)]T , where
x0(k) = x(k), x1(k) = x(k − 1), ..., xN (k) = x(k − N).
W (k) = [w0(k), w1(k), ..., wN (k)]T is the coefficient vector
of the filter, which is to be determined. The signal d(k) is the
so called reference or desired signal, which is specified as the
IGTE series in this paper. Denote y(k) as the response signal
of the traversal filter corresponding to the input signal x(k).

Fig. 2. Architecture of The Traverse Filter

Given these notations, we have

y(k) =

N∑
i=0

wi(k)xi(k) =WT (k)X(k) (4)

Note that the predicting task is equal to ensure y(k) and
d(k) as close as possible. The difference between y(k) and
d(k) is called the error signal, defined as follows:

e(k) = d(k)− y(k) (5)

The metric used to measure the degree of the difference
between y(k) and d(k) is MSE(Mean Square Error), which is
defined as follows:

ξ(k) = E[e2(k)] (6)

Substituting equation (4) and equation (5) into equation (6),
we have

ξ(k) = E[d2(k)− 2d(k)y(k) + y2(k)] (7)

The MSE ξ(k) is also known as the objective function in
the field of optimization. Thus the problem of prediction is



turned into minimizing the MSE function—ξ(k). When the
objective of the traverse filter is to minimize certain kind of
objective function, it is known as the Wiener filter.

From equation (4), the MSE function can be rewritten as
[10]

ξ(k) =E[d2(k)− 2d(k)WT (k)X(k)+

WT (k)X(k)XT (k)W (k)]

=E[d2(k)]− 2E[d(k)WT (k)X(k)]+

E[WT (k)X(k)XT (k)W (k)]

(8)

Assume the coefficient vector of the Wiener filter is fixed
and the environment is stationary, the MSE function is given
by

ξ = E[d2(k)]− 2WTP +WTRW (9)

where P = E[d(k)X(k)] is the cross-correlation vec-
tor between the reference and input signals, and R =
E[X(k)XT (k)] is the correlation matrix of the input signal.
Note that in equation (9) ,the time indexes of the coefficient
vector and MSE function are removed due to the previous
assumptions.

In order to minimize ξ, we calculate its gradient vector gW
related to W . We have

gW =
∂ξ

∂W
= −2P + 2RW (10)

By equating the gradient vector to zero, the optimal coef-
ficient vector which minimizes the MSE function ξ can be
evaluated as follows:

W0(k) = R−1P (11)

This solution is called the Wiener solution [9]. Choosing
the Wiener solution as the coefficient vector, we can precisely
predict the IGTE series with the IGFE series to the greatest
extent.

Unfortunately, we can not directly obtain the Wiener so-
lution in practice. The difficulties lie in that it is usually
hard to precisely estimate R and P since the stationary
prerequisite required by the Wiener solution is usually not
satisfied, especially in network environment. The solution for
this situation is the LMS algorithm, which will be described
later.

B. Least Mean Square Algorithm

Since the Wiener solution can not be directly calculated, we
update the coefficient vector according to the famous steepest-
descent algorithm in optimization theory [11]:

W (k + 1) =W (k)− µgW (k) (12)

where µ is the convergence factor. Note that the coefficient
vector is no longer fixed, but varies over time. Hence, the
variables in the above equation are all associated with a time
index.

However, the same problems are still unsolved. Recall
equation (10), the value of gW (k) depends on R and P ,
which are not known in advance and are usually time-varying.

It means that during each step of iteration, we need to re-
estimate the current values of R and P . One possible solution
is to estimate them using their instant samples. Denote the two
estimates by R̂ and P̂ , we have

R̂ = X(k)X(k)T

P̂ = d(k)X(k)
(13)

Substituting the above equation into equation (10), we have

ĝW =2X(k)(−d(k) +XT (k)W (k))

=− 2e(k)X(k)
(14)

where e(k) is the error signal defined in equation (5).
Substituting equation (14) back into equation (12), we have

W (k + 1) =W (k)− 2µe(k)X(k) (15)

The above updating equation is called the Least Mean
Square(LMS) algorithm, which forms the core of our anomaly
detection algorithm. When the traverse filter shown in Figure
2 updates W (k) according to equation (15), it is known as the
LMS adaptive filter.

C. Detection Algorithm

The updating procedure of the LMS algorithm tends to
reduce the difference between the output signal y(k) and the
reference signal d(k) to the greatest extent. As long as d(k)
and the input signal x(k) are highly linearly correlated, the
resulting error signal e(k) should be close to zero. Hence, we
propose an online anomaly detection algorithm based on the
LMS algorithm.

Take the IGFE series as the input signal x(k), and the IGTE
series as the reference signal d(k). The procedure of detection
is as follows: first, calculate the IGFE value x(k) and IGTE
value d(k) in the current step. Along with previous N IGFE
values, we construct the current input signal vector X(k) =
[x(k), x(k − 1), ..., x(k − N)]T . Using the coefficient vector
W (k) obtained in time instant k − 1, we calculate the output
signal of the LMS filter by y(k) = XT (k) × W (k). From
equation (5), we generate the error signal e(k). Once |e(k)|
exceed certain threshold, an alarm is triggered. Then update
the coefficient vector according to equation (15) for the next
step. The details is illustrated in Algorithm 1.

Note that the LMS-based detector is an on-line method
in its nature. That is because it generates the error signal
in each step, and reports the detection results in real time.
In other words, it does not need to wait for the data to be
collected completely before operation. At each time instant, it
can detect anomalies using past data points which are collected
in previous steps. This real time property makes the LMS-
based detector suitable for on-line applications.

D. Rationale Behind LMS-based Detection Method

Anomalies usually change the number of IP flows on the
link or the traffic volume of certain IP flows. Some anomalies
such as port scans, would generate lots of small IP flows in
the network. This leads to a large increase in the number



Algorithm 1 LMS-based anomaly detection algorithm
Input: Raw IP flow records from time instant 1 to t;

Threshold τ ;
Convergence factor µ;

Output: Anomalous time intervals;
1: for all k such that 1 ≤ k ≤ t do
2: Hash the IP flows in time interval i into p different

groups;
3: Generate the kth row of RATM T ;
4: Generate the kth row of RAFM F ;

5: d(k) = −
∑p

j=1

{
T (i,j)∑p

j=1
T (i,j)

ln T (i,j)∑p

j=
T (i,j)

}
;

6: x(k) = −
∑p

j=1

{
F (i,j)∑p

j=1
F (i,j)

ln F (i,j)∑p

j=1
F (i,j)

}
;

7: X(k) = [x(k), x(k − 1), ..., x(k −N)]T ;
8: e(k) = d(k)−XT (k)×W (k);
9: W (k + 1) =W (k)− 2µe(k)X(k);

10:
11: if |e(k)| > τ then
12: Output: Time interval k;
13: end if
14: end for

of IP flows, which changes the IGFE value dramatically.
However, the traffic volume generated by the anomalies is
very small compared to the overall traffic volume on the
link, which barely changes the IGTE value. Therefore, the
linear correlation between IGTE and IGFE is destroyed, which
means we can not precisely predict IGTE using IGFE. This
would result in large error signals, which can be detected by
the LMS-based detector.

Some anomalies such as DDoS attacks, would increase the
number of IP flows and the traffic volume at the same time.
However, the magnitude of traffic volume change is usually
much larger than the number of IP flows. Hence, the degree of
change of IGTE is much larger than IGFE. This results in the
breach of the linear relation between IGTE and IGFE. Thus
the anomalies would be detected by the LMS-based detector.

There are also some anomalies which would increase the
number of IP flows but decrease the traffic volume on the
link. Take Low-rate DDoS attacks [12] as an example, the
attackers would generate millions of attacking IP flows, which
will definitely change the IGFE value. On the other hand,
the traffic volume generated by the attacking IP flows is
very low on average, since these attacks are performed in
the form of pulses. At the same time, the traffic volume of
normal IP flows would be reduced dramatically due to the
misuse of congestion control mechanism in network. Therefore
the overall traffic on the link would decrease dramatically,
which would change the IGTE value. Though both IGTE and
IGFE change, they change in opposite directions, which would
destroy the linear correlation between them. This will generate
large error signals, which can be detected by the LMS-based
detector.

IV. DATA SOURCE

The data used in this paper is three-day Netflow Records
collected from a border router in the Second Generation of
China Education and Research Network (CERNET2). CER-
NET2 connects 25 PoPs including Peking University, Tsinghua
University, Beijing University of Aeronautics and Astronautic-
s(Beihang University), University of Science and Technology
,etc. The border router used for collecting data connects CER-
NET2 backbone and Beihang University Campus Network.
Due to the high volume of traffic in backbone, the sampling
rate is set to 1 : 1000. The Netflow Records are exported every
five minutes. The five-tuple value, the traffic volume of each IP
flow are recorded. In five minutes, the average traffic volume
is about 1.525× 108 bytes, the average traffic volume of each
IP flow is about 985 bytes, and the average number of IP
flows is about 154730. Note that these numbers are based on
the sampled data, the real values of them should be multiplied
by 1000 for the original network data.

V. VALIDATION

We choose the number of groups into which the IP flows
are hashed as 1024. From the three-day CERNET2 data, we
generate an IGTE series and an IGFE series, both with length
882. Note that in practice, the IGTE and IGFE values should
be calculated in real time for on line detection. The reason
for the “off-line” fashion here is that we can conveniently
control the procedure of injecting artificial anomalies into the
CERNET2 data.
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Fig. 3. Anomalies detected by the LMS-based detector for CERNET2 data

In this paper, we first apply the LMS-based detector on the
CERNET2 data to pinpoint suspicious data points and generate
“cleaned” data set. Then we manually inject artificial anoma-
lies into the “cleaned” data. We apply the LMS-based detector
on this synthetical data to evaluate its effectiveness quantita-
tively, that is, to calculate its true positive rate(detection rate)
and false positive rate. The definitions of true positive rate and
false positive rate in this paper originate from the introductory
document about ROC analysis [13]. We also apply the widely
applied wavelet-based detector [7] on the synthetic data for
the purpose of comparison.



A. Generation of “Clean” Traffic
We apply the LMS-based detector on the three-day CER-

NET2 Netflow data, the resulting error signal is illustrated in
Figure 3. The detected anomalies are marked with red circles.
Totally 14 data points are reported as anomalies. Since the
CERNET2 Netflow Records are not benchmark data, we do
not know in advance which points are true anomalies and
which are not. Thus we can not claim that the data points
pinpointed by the LMS-based detector are true anomalies. The
only thing we can be sure is that these points are different from
the others in the point of view of statistics. Therefore, we can
not quantitatively evaluate the effectiveness of the LMS-based
detector. We bypass this difficulty by using artificial synthetic
data. In order to generate the synthetic data, we need to
generate the so-called “clean” data set first. We simply achieve
this by removing the 14 detected anomalous points to eliminate
their impacts on calculating the true and false positive rates
of the LMS-based detector. We can not be sure whether the
”clean” data is really “clean”. However, we manually check
the log files of a large number of servers in CERNET2, they
show no obvious trails of attacks during the three days when
the Netflow Records are collected. It means that even if the
“clean” data contained some anomalies, the number would be
too small to impact the results of the validation process.
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Fig. 4. True Positive Rate for A Small Number of Anomalous IP Flows

B. Experiments on Synthetic Data
In order to evaluate the effectiveness of LMS-based detector

quantitatively and rigorously, we manually injected anomalies
into the ”clean” data. First, we inject certain number of
anomalous IP flows every 22 time intervals into the “clean”
data. There are totally 35 artificial anomalies contained in
the synthetic data. We do not inject any anomaly in the first
30 time intervals. The reason is that it needs some time for
the LMS-based detector to converge. After that, we apply
the LMS-detector on the synthetic data and calculate the true
positive rate and false positive rate respectively.

According to the number of IP flows related to the injected
anomalies, we evaluate the effectiveness of the LMS-based
detector in two cases:
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Fig. 5. False Positive Rate for A Small Number of Anomalous IP Flows
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Fig. 6. True Positive Rate for A Large Number of Anomalous IP Flows

• Anomalies involving a small number of IP flows.
• Anomalies involving many small IP flows.

Note that we ignore the case where the anomalies involve
many large IP flows on purpose. Because in this case, the
volume of the network traffic would change so much that the
anomalies can be identified by volume-based methods or even
by the naked eyes. There is no need to show the experiment
results in this case for the sake of brevity.

In the first case, we focus on the impact of the traffic volume
of injected anomalies for the LMS-detector. We inject 22
anomalous IP flows and gradually increase their traffic volume.
The resulting true positive rate curve and false positive rate
curve are shown in Figure 4 and 5. It can be seen that the true
positive rate rises sharply at first, and converges to around 80%
when the proportion of the anomalous traffic reaches 21% of
the total traffic volume on the link. The false positive rate
of LMS-based detector rises slowly, and converges to around
12% eventually. These results are not excellent but within
acceptable scope.

We also apply the wavelet-based detector to the same
synthetic data. The results are shown in Figure 4 and 5 as
well. The true positive rate of the wavelet-based detector



keeps around 2%, and shows no sign of growth when the
anomalous traffic increases. This low level of true positive rate
is unacceptable in practice. In the mean time, the false positive
rate of the wavelet-based detector keeps between 2% and 4%,
which is smaller than the LMS-based detector. However, this
advantage can not make up its bad performance in detection
capability.
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Fig. 7. False Positive Rate for A Large Number of Anomalous IP Flows

In the second case, we focus on the impact of the number of
anomalous IP flows. We set the traffic volume of each injected
IP flow as 50 bytes. Considering the average traffic volume of
each IP flow in sampled CERNET2 data is around 985 bytes,
the traffic volume per anomalous IP flow is very small. Then
we gradually increase the number of injected IP flows. The
results for the LMS-based detector are shown in Figure 6 and
7. The true positive rate rises sharply and converges to 100%
eventually, which means the LMS-based detector can detect
all the injected anomalies when the proportion of anomalous
IP flows reaches 40%. The false positive rate of LMS-based
detector keeps below 7%, which is acceptable for practical
applications.

As comparison, the results of wavelet-based detector are
also shown in Figure 6 and 7. We can see that the wavelet-
based detector barely detect any injected anomalies, even its
false positive rate is lower than 4%. We figure the reason
for the bad performance of the wavelet-based detector as
follows. It takes the variance of the network traffic as the only
criterion for detection. It ignores the fact that the variance of
network traffic is usually proportional to the absolute volume
of network traffic, and high traffic volume usually corresponds
to massive normal users rather than network anomalies. We
leave the validation of this guess for future work.

In conclusion, based on the synthetic CERNET2 data, our
LMS-based detector performs well at detecting both anomalies
involving a few large IP flows and anomalies involving many
small IP flows.

VI. CONCLUSIONS

In this paper, we propose a new on-line anomaly detection
method. It makes use of two highly correlated metrics—IGTE

and IGFE. Its basic idea is to use IGFE values to predict the
current IGTE value with the LMS algorithm, and to use the
magnitude of the prediction error(error signal) as the criterion
for detection. It does not need to wait for the entire data
set to be collected before detecting anomalies. Instead, it can
output detection results in real time, and is suitable for on-line
applications.

Using the artificial synthetic data, it is shown that the LMS-
based detector possesses strong detection capability, and its
false positive rate is within acceptable scope. We compare the
LMS-based detector with the wavelet-based detector, it turns
out that the former performs much better than the latter.
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