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1. Introduction 
 

Given a Space-Time Block Code (STBC) Multiple-Input Multiple-Output Spatial-
Multiplexing system (MIMO-SM), both diversity gain and spatial multiplexing gain can be obtained 
simultaneously [1, 2]. An optimum decision algorithm is proposed to achieve an additional weight 
gain in the Multiple-Input Multiple-Output (MIMO) Space-Time Block Coding (STBC) wireless 
system design without increased hardware complexity. The optimum weight vector generated using 
the Bayes decision algorithm [3] maximizes the most likely ‘closest’ transmitted signal power to the 
received vector with a minimum ‘Risk’ criterion based on the first- and second-order statistics of the 
measured MIMO sub-channels, and then multiplies the received sub-channels respectively. Hence, 
this proposed scheme maximizes the received signal-to-noise ratio (SNR) over the spatially-
correlated multipath fading channel. The simulation analyses show that our proposed design 
provides a system performance improvement of about 3 dB in comparison with the conventional 
design without adopting an optimum decision scheme.  
 
2. System Model 
 

Consider a complex orthogonal STBC design using N spatial diversity antennas and M 
receiving antennas (STBC-MIMO). In a general form, a sequence of transmit complex symbols{ }ks , 
k=0, 1, 2, .., N-1, is first divided into G=N/2 groups for N transmit antennas using pair-wise ML 
decoder of Alamouti decoding for each antenna group [4, 5]. Fig. 1 shows a typical system model 
for our performance analyses. The channel between each pair of TX and RX antennas is assumed to 
be independently and identically distributed (i.i.d.) Rayleigh fading. In reality, however, the 
spatially-correlated fading MIMO channel owing to inadequate scattering and/or inadequate 
antenna spacing results in the capacity being substantially reduced.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 A typical 2x2 MIMO wireless system incorporated with an optimum weight algorithm 
 
In order to fulfill our channel simulations, a so-called Kronecker channel model and the relative 
power covariance of the channel coefficients [6] is considered here. The power correlation 
coefficients 2μ  and 2ρ  between the two antenna groups at the transmitter and the receiver are 
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considered respectively, resulting a correlation matrix during our system simulation. The received 
signal-to-noise power ratio (SNR) at the rth sub-channel is therefore expressed 
as

2)(
n

rr
PSNR
σ

λ= , where 

N/PP T=  for equal transmit power.  The path gain power,  ∑∑∑
== =

=
R

r
r

M

m

N

n
mn

11 1

2 λα , is relevant to   the  

channel coefficients, mnα  , which is also expressed as the sum of the eigenvalues of channel 
covariance matrix with rank R. 

In our proposed scheme, the key issue is how to generate the optimum weights that result in the 
received signal enhancement in the better sub-channel and less signal power in the poor sub-channel. 
The threshold mn

~α  is, therefore, taken from the maximum value of its corresponding optimum 
decision region (i.e. mn

~α = max[
mn

Rα
] ) for each sub-channel. 

 
3. Optimum Decision Algorithm 
 

The Bayes decision rule for an M-by-N MIMO system uses an extension of the average cost 
criterion [3, 7] over M-likelihood receiving antennas. With a multiple channel scenario, our 
proposed scheme enhances more path gain in the better channels and lessens the signal power in 
the poor channels via optimum weigh per sub-channel.  Similar approaches, such as the water-
filling algorithm [8], were presented with a closed-loop MIMO antenna structure (i.e. channel 
covariance known at the transmitter). In Bayes decision algorithm, the average cost for a decision is 
therefore selection of the optimal received signal range such that the average cost is minimized on a 
number of assumptions as follows: 
1. A priori probabilities and conditional probability density functions 

 The statistical properties related to the MN-hypotheses can be categorised into the conditional 
probability density function, )/( ijRP α , and its corresponding a priori probability, )( ijrP α ,The 
conditional probability density function of the envelope of ijα , thereafter represented by )/( ijRP α , 
shows a Rayleigh distribution, and its a priori probability )( ijrP α given to each channel coefficient 
is assumed to be equal (i.e. =)( 11αrP )( 21αrP =….= )( MNrP α =c; c=1/MN ). 
2. Cost factors  

According to Bayes costs, a zero-one cost assignment (hard decision) is considered here 
whereby all costs for errors are one and all costs for correct decision are zero,  

MNijforCdecisioncorrect
ijklMNijklforCdecisionerror

ijij

ijkl
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For the sake of generality, we extend the average cost for a MN-hypotheses antenna 
structure, C , is given as 
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If we invoke the definition of the average cost function introduced in (1), the integrands can be rewritten as 

∑∑
= =

=
M

i

N

j
ijijijklkl RPPCy

1 1
, )/()()( ααα                                                                              (2) 

The observed channel coefficient ijα  can be classified into one of the signal ranges (i.e. α∈ ijR ). From the 
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0

~

σ
α ij

ijw =

cost function (1) and (2), we see that the average cost will be minimized if the signal regions ijR , are selected 

when α ∈ ijR  if )()( αα klij yy <   for k =1,2, .. , M and l =1,2,.., N and ij≠kl.
 ijR  is the estimated 

optimum signal region with respect to the ijα  sub-channel and were identified as the intersection of MN-
1 individual regions. The optimum decision regions corresponds to the sub-channel 
coefficients,

ijα ’s, are selected to be mutually exclusive and exhaustive, with a measured boundary 
range over three times the 0σ  (i.e.

01,114131211 3... σ=−− MNNM RRRRRR IIIIII ), corresponding to 
the probability of exceeding  
the Rayleigh envelope by one percentage (1%). The threshold ijα~  is taken from the maximum value 
of its corresponding signal region (i.e. 

ijα~ = max(
ijR ), and then the weight factor is defined as [4]                             

, i=1, 2, .., M and j =1, 2, .., N                                                 (3) 
  
4. Simulation Analyses and Summary 
 
From Fig.1, these specific optimum weights are used to multiply the received signals at the received 
sides of every L-block length. The output of maximum coherent combination is therefore given by 
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where mn ,δ is the correlation element of the Kronecker (product) matrix. The spatially-correlated 
fading, however, causes the received signal coupling loss to be taken into account, as a factor of        

2
,1 mnδ− . During our simulations, a maximum Doppler frequency, df , exists in the i.i.d. complex 

fading components with normalized 010.Tf d =  being adopted, where T is the sampling data 
duration. Fig. 2 presents the eigen-analysis under spatially correlated 4×4 MIMO channel condition 
cases A ( 2.0,4.0,3.0,2.0 4334211243342112 ======== ρρρρμμμμ and  ). The analysis 
uses various signal blocks L for a total of 204800 samples per channel coefficient. The cumulative 
distribution function (cdf) of measured eigenvalues ( 1234 λλλλ >>> ) validates our proposed 
model in which the system incorporated with the Bayes decision algorithm has remarkable SNR 
improvement than the conventional one (without adopting Bayes optimum algorithm).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 The cdfs of the eigenvalues in case-C with Bayes decision algorithm for L=50, 100, 200, and 400, and 

comparison with conventional one (w/o Bayes); X-axis:10 log10 (λ) and Y-axis: log10 (percentage) 
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For BER analysis, the QPSK modulations with Gray mapping and the block length of the 
information signal vector are given, corresponding to various L values. The BER performance with 
an additive white Gaussian noise (AWGN) channel is shown to serve as the performance 
benchmark using 1Tx/1RX antenna structure (SISO), without considering the spatially-correlated 
fading effects. In Fig.3, at a BER level of 310 − , there is a performance improvement of about 
2.2~3.0 dB compared with the conventional Alamouti two-branch model (without Bayes algorithm) 
under a spatially-correlated fading channel. However, the coupling loss of correlation coefficients 
between antennas and matches rational SNR values with respect to a 2

m,n1 δ− degradation factor is 

of interest for further investigation. It is also noted that a small length L suffers less Doppler effects, 
resulting in more precise channel covariance, but increases the iterative algorithm computational 
load. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 Average BER performance versus 0/ NEb  – comparison of QPSK simulation results 
with/without Bayes decision algorithm against various L in spatially-correlated case-A, vs. 
unconditional BER in AWGN (1-Tx/1-Rx) 
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