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Abstract—Real systems can be described by networks:
Internet, WWW, neural networks, and human relationships.
A novel framework which combines the complex network
theory and the nonlinear time series analysis becomes one
of the useful tools to understand characteristics of these
complex networks and reveal hidden structures underlying
in these complex networks. In the framework, using the
classical multidimensional scaling, complex networks can
be transformed into time series. In this paper we inves-
tigated the distribution of values of the time series trans-
formed from the networks by the transformation method of
the framework. We compared the distributions obtained
from real networks with those from networks generated
from the Watts-Strogatz model and the Barabási-Albert
model to discuss characteristic properties of the real net-
works.

1. Introduction

Networks are one of the useful tools to describe various
real systems, such as WWW[1], humans relationship[2],
neural network[3], traffic networks[4] and so on. Net-
works consist of vertices and edges. In these real networks,
vertices could be websites, neurons, human, trains; edges
could be links, friendship, axons or railways. Recent re-
searches on these complex networks have revealed that the
real networks have common properties such as small-world
property[3], scale free property[5] and so on.

In the past decade, to analyze structural features of the
real complex networks, several measures have been pro-
posed, for example, characteristic path length, clustering
coefficient, and degree correlation. Even though these mea-
sures can effectively characterize the structural features of
the real networks, it is still important to evaluate real net-
works from various points of view because of a wide vari-
ety of the real networks.

A transformation method from complex networks to
time series can be a new effective tool to evaluate the struc-
tures of the networks from the perspective of time series[6].

For example, networks show intrinsic distributions of the
values of the time series[7]. Although the distributions of
the timeseries have been numerically calculated from the
time series of networks generated from a few mathematical
models in Ref. [7] it is still unclear. However, the distribu-
tions time series transformed from real complex networks
are evaluated.

In this paper, we analyzed six real networks using the
transformation method[6]: the western states power grid
network of the United States[3], a word adjacency network
of common adjectives and nouns[8], a neural network of
C. elegans[3], an American college football network which
consists of American football games between Division IA
colleges 2000[9], a jazz musicians network[10], and a US
air lines network[11].

2. From networks to time series

To transform networks into time series, we used a
method of Ref.[6]. In this method, the classical multidi-
mensional scaling(CMDS)[12] is used as a main tool to
transform the networks to time series.

Let A = (ai j) be an N × N adjacency matrix of an undi-
rected and unweighted network with N vertices. If vertices
vi and v j are adjacent, ai j = 1, otherwise ai j = 0. In Ref.
[6], the quasi-distance di j between vertices vi and v j is de-
fined as follows: if ai j = 0 (i ! j), di j = w (> 1) oth-
erwise di j = ai j. By using the CMDS[12], we calculated
coordinate values that satisfy the defined quasi-distance as
accurately as possible. At first, A is transformed into a
squared distance matrix D = (d2

i j). Next, D is transformed
by G = − 1

2 JN DJT
N , where JN = E − 1

N 1N1T
N , where E is an

N × N unit matrix and 1N is a column vector with N ones.
The coordinate values of vertices are calculated by de-

composing G into eigenvalues and eigenvectors:

G = PΛPT = (PΛ
1
2 )(PΛ

1
2 )T = XXT ,
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where

Λ
1
2
N = diag(

√
λ1,
√
λ2, · · · ,

√
λN),

P = (p1, p2, · · · , pN)T ,

pm = (pm1, pm2, · · · , pmN)T (λ1 ≥ λ2 ≥ · · · ,≥ λm).

Let h be the number of nonzero eigenvalues of G.
Then, the coordinate matrix X is described by X =
(x1, x2, · · · , xN)T , and xm = (xm1, xm2, · · · , xmh)T is the h-
dimensional coordinate value of the vertex vm. The number
of nonzero eigenvalues h corresponds to the dimension of
the Euclidean space where the vertices are arranged. Fi-
nally, we defined the patterns of coordinate values of N
vertices, or the eigenvectors, as a time series xmt =

√
λm pmt

(1 ≤ m ≤ h, 1 ≤ t ≤ N).
This means that the indices of vertices are treated as

quasi-discrete time. In this paper, we focused on the dis-
tribution of values of the time series, xi j. Thus, we did not
use the temporal information. Namely, we investigated dis-
tributions of coordinate values of time series transformed
from the real networks, then compared the results of the
real networks with those of network models. In the follow-
ing results, we used 100 eigenvectors whose eigenvalues
correspond to λ1, λ2, · · · , λ100. We used small values of w
which is close to unity according to Ref.[6].

2.1. Network model

We first used two network models: the Watts-Strogatz
(WS) model[3] and the Barabási-Albert (BA) model[5].
The WS model starts from a ring-lattice, and can generate
small-world networks and random networks. In the Watts-
Strogatz model, an initial state is a ring-lattice network with
N vertices whose degree is k. Then, the edges in the ring-
lattice are rewired at random with a probability p. When
p = 0, the network is the same as the initial ring-lattice
network that has a large characteristic path length L and a
small clustering coefficient C. When the probability p gets
larger, the generated networks change to a small-world net-
work which has a small L and a large C. When p = 1, all
edges are rewired, and the generated network is a random
network which has a small L and a small C. In numerical
simulations, we set N to 1,000 and k to 10.

Networks generated by the BA model have a power-
law degree distribution which is also found in many real
networks, for example, the World Wide Web[5], power
grids[5] and so on. In the BA model, we start from a com-
plete graph with m0 vertices. Next, at every time step t, a
new vertex with m edges is added to the network repeatedly.
The new vertex then connects to m different pre-existing
vertices with the following probability:

Pi(t) = ki(t)/
m0+t∑

j=1

k j(t).

The new vertices are added until the number of vertices
becomes N. In this paper, we set N to 5,000, m0 to 11 and
m to 10.

2.2. Real networks

First, we used six real networks. The first one is the
western states power grid of United States[5]. The ver-
tices can be generators or power substations and the edges
can be electric cables. The second one is a word-adjacency
network which adjectives and nouns in the novel of David
Copperfield by Charles Dickens[8]. The vertices are nouns
and adjectives. For example, in a phrase of “the big green
bus,” the adjective “big” is connected to the noun “bus.”
The third one is a neural network of C. elegans[5] in which
the vertices are neurons and the edges are axons. The fourth
one is an American college football network in which the
vertices correspond to teams and the teams are connected
if they have games in a regular season[9]. The fifth one
is a jazz-musicians network which the vertices are musi-
cians who are connected by an edge if two musicians have
played in the same band[10]. The sixth one is a US airline
network[11] in which the vertices are airports connected by
direct flights. We show summarized the clustering coeffi-
cient C, the characteristic path length L, the network size
N and the average degree < k> of these networks in Table
1.

Table 1: Clustering coefficients L, characteristic path
lengths L, network sizes N and average degrees <k> of the
real networks. The clustering coefficients and the charac-
teristic path lengths are normalized by corresponding ran-
domized networks CR and LR.

network C/CR L/LR N <k>
ring lattice 9.2 3.0 112 8.0

53.6 2.3 1,000 10.0
small-world 1.2 1.4 112 8.0

51.1 1.0 1,000 10.0
random 1.0 1.0 112 8.0

1.0 1.0 1,000 10.0
scale-free 5.0 0.9 5,000 19.9
power grid 16.0 1.5 4,941 2.7
adjective and nouns 3.0 1.0 112 7.6
C. elegans 5.8 1.0 297 14.5
American football 5.1 1.1 115 10.7
Jazz musicians 4.5 1.2 198 27.7
US airlines 19.7 1.3 332 12.8

3. Results

We first show the distribution of coordinate values of
time series transformed from the WS network model. We
show the distribution of the coordinate values when the
rewiring probability p is changed in Fig. 1. In Fig. 1, we
found that the distribution of the coordinate values change
from a bimodal distribution (p = 0) to a trapezoid-like dis-
tribution (p = 0.01) as the rewiring probability p increases.
Finally, it becomes an unimodal distribution (p = 1). (see
also Fig. 2)
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Figure 1: Distributions of the coordinate values of the time
series transformed from the WS model when the rewiring
probability p is changed.
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Figure 2: Distributions of the coordinate values of the WS
model: (a) a ring-lattice network, (b) a small-world net-
work, and (c) a random network. The results are averaged
over 50 trials.

Figure 3: Distributions of the coordinate values of the BA
model when the network size N is changed from 300 to
5,000.

Second, in the case of the BA model, we investigated
the distribution of the coordinate values when the network
size increases (Fig. 3). The distributions have unimodal
shape, which is the same tendency as the random networks
generated from the WS model. However, the peak of the
distribution of the BA model becomes sharp as the network
size increases (see also Fig. 4).
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Figure 4: Distributions of the coordinate values of the BA
model: scale-free networks which have (a) 300 vertices and
(b) 5,000 vertices. The results are averaged over 30 trials.

Third, we examined six real networks. All of the real
networks are regarded as undirected and unweighted by
symmetrization (ai j = a ji = 1 ,if ai j + a ji ≥ 1). The results
are summarized in Fig. 5 in the networks of C. elegans, the
power grid and the jazz-musician, the distribution shows
sharp unimodal distributions (Fig. 5(a),(c),(i),(k)). These
distributions are similar to that of the BA model(Fig. 4).

From Fig. 5(e), the distribution of the coordinate values
of the adjacency network of common adjectives and nouns
has an unimodal distribution which is not sharp and similar
to that of the random network of the WS model. The net-
work of American football games (Fig. 5(g)) also has the
unimodal distribution which is also similar to that of the
random network.

We have focused on the word adjacency network and
the American football network. These two networks have
small L and large C compared with the random networks
Table 1. However, we can distinguish these two networks
by coordinate values.

In Fig. 6, we calculate the distributions by changing the
number of eigenvectors. When we only use the eigenvec-
tors corresponding to large eigenvalues (0 ≤ m ≤ 200),
the two networks have intrinsic distributions and we can-
not detect their differences. However, when we use the
eigenvectors corresponding to not only small but also large
eigenvalues, we can find their difference.

The number of the values of zero clearly increases in
the word adjacency network (Fig. 6(b)), which is similar
to the scale-free network (Fig. 6(d)). On the other hand,
the values of zero do not increase in the American football
network (Fig. 6(a)), which is similar to the small-world
network (Fig. 6(c)). In addition, Fig. 6 indicates that
each eigenvector might reflect important properties of the
networks. In particular, the eigenvectors corresponding to
large eigenvalues might show structural property of scale-
free networks.

4. Conclusions

In this paper, we used the transformation method from
networks to time series[6] to investigate real networks. We
compared the distribution of the time series transformed
from the real networks by the transformation method to dis-
cuss the results obtained from the real networks. Although
they are different in size, average degree, clustering coeffi-
cient and characteristic path length, the real networks could
have distributions of the coordinate values like the network
models.
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Figure 5: On the left side is the distribution of the coor-
dinate values of (a) the neural network of C. elegans, (c)
the western states power grid of the United States, (e) the
adjacency network of common adjectives and nouns in the
novel of David Copperfield by Charles Dickens, (g) the net-
work of American football games, (i) the network of jazz-
musician and (k) the network of US air lines. The right col-
umn shows the degree distributions corresponding to each
network in the double logarithmic scale. (b) The dotted
lines in (b), (d) and (l) have slopes of −1.3,−2.1 and −1.1
respectively.
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Figure 6: Distributions of the coordinate values in differ-
ent amount of eigenvectors. (a) the network of American
football games,(b) the adjacency network of common ad-
jectives and nouns in the novel of David Copperfield by
Charles Dickens, (c) a small-world network of WS model,
(d) a BA model.
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